375 research outputs found

    Theory of continuum percolation I. General formalism

    Full text link
    The theoretical basis of continuum percolation has changed greatly since its beginning as little more than an analogy with lattice systems. Nevertheless, there is yet no comprehensive theory of this field. A basis for such a theory is provided here with the introduction of the Potts fluid, a system of interacting ss-state spins which are free to move in the continuum. In the s1s \to 1 limit, the Potts magnetization, susceptibility and correlation functions are directly related to the percolation probability, the mean cluster size and the pair-connectedness, respectively. Through the Hamiltonian formulation of the Potts fluid, the standard methods of statistical mechanics can therefore be used in the continuum percolation problem.Comment: 26 pages, Late

    Geometry dependence of the clogging transition in tilted hoppers

    Get PDF
    We report the effect of system geometry on the clogging of granular material flowing out of flat-bottomed hoppers with variable aperture size D. For such systems, there exists a critical aperture size Dc at which there is a divergence in the time for a flow to clog. To better understand the origins of Dc, we perturb the system by tilting the hopper an angle Q and mapping out a clogging phase diagram as a function of Q and D. The clogging transition demarcates the boundary between the freely-flowing (large D, small Q) and clogging (small D, large Q) regimes. We investigate how the system geometry affects Dc by mapping out this phase diagram for hoppers with either a circular hole or a rectangular narrow slit. Additionally, we vary the grain shape, investigating smooth spheres (glass beads), compact angular grains (beach sand), disk-like grains (lentils), and rod-like grains (rice). We find that the value of Dc grows with increasing Q, diverging at pi-Qr where Qr is the angle of repose. For circular apertures, the shape of the clogging transition is the same for all grain types. However, this is not the case for the narrow slit apertures, where the rate of growth of the critical hole size with tilt angle depends on the material

    Theory of continuum percolation II. Mean field theory

    Full text link
    I use a previously introduced mapping between the continuum percolation model and the Potts fluid to derive a mean field theory of continuum percolation systems. This is done by introducing a new variational principle, the basis of which has to be taken, for now, as heuristic. The critical exponents obtained are β=1\beta= 1, γ=1\gamma= 1 and ν=0.5\nu = 0.5, which are identical with the mean field exponents of lattice percolation. The critical density in this approximation is \rho_c = 1/\ve where \ve = \int d \x \, p(\x) \{ \exp [- v(\x)/kT] - 1 \}. p(\x) is the binding probability of two particles separated by \x and v(\x) is their interaction potential.Comment: 25 pages, Late

    Structural Polymorphism of the Cytoskeleton: A Model of Linker-Assisted Filament Aggregation

    Full text link
    The phase behavior of charged rods in the presence of inter-rod linkers is studied theoretically as a model for the equilibrium behavior underlying the organization of actin filaments by linker proteins in the cytoskeleton. The presence of linkers in the solution modifies the effective inter-rod interaction and can lead to inter-filament attraction. Depending on the system's composition and physical properties such as linker binding energies, filaments will either orient perpendicular or parallel to each other, leading to network-like or bundled structures. We show that such a system can have one of three generic phase diagrams, one dominated by bundles, another by networks, and the third containing both bundle and network-like phases. The first two diagrams can be found over a wide range of interaction energies, while the third occurs only for a narrow range. These results provide theoretical understanding of the classification of linker proteins as bundling proteins or crosslinking proteins. In addition, they suggest possible mechanisms by which the cell may control cytoskeletal morphology.Comment: 17 pages, 3 figure

    The OBO Foundry: Coordinated Evolution of Ontologies to Support Biomedical Data Integration

    Get PDF
    The value of any kind of data is greatly enhanced when it exists in a form that allows it to be integrated with other data. One approach to integration is through the annotation of multiple bodies of data using common controlled vocabularies or ‘ontologies’. Unfortunately, the very success of this approach has led to a proliferation of ontologies, which itself creates obstacles to integration. The Open Biomedical Ontologies (OBO) consortium has set in train a strategy to overcome this problem. Existing OBO ontologies, including the Gene Ontology, are undergoing a process of coordinated reform, and new ontologies being created, on the basis of an evolving set of shared principles governing ontology development. The result is an expanding family of ontologies designed to be interoperable, logically well-formed, and to incorporate accurate representations of biological reality. We describe the OBO Foundry initiative, and provide guidelines for those who might wish to become involved in the future

    A comprehensive microarray-based DNA methylation study of 367 hematological neoplasms

    Get PDF
    Background: Alterations in the DNA methylation pattern are a hallmark of leukemias and lymphomas. However, most epigenetic studies in hematologic neoplasms (HNs) have focused either on the analysis of few candidate genes or many genes and few HN entities, and comprehensive studies are required. Methodology/Principal Findings: Here, we report for the first time a microarray-based DNA methylation study of 767 genes in 367 HNs diagnosed with 16 of the most representative B-cell (n = 203), T-cell (n = 30), and myeloid (n = 134) neoplasias, as well as 37 samples from different cell types of the hematopoietic system. Using appropriate controls of B-, T-, or myeloid cellular origin, we identified a total of 220 genes hypermethylated in at least one HN entity. In general, promoter hypermethylation was more frequent in lymphoid malignancies than in myeloid malignancies, being germinal center mature B-cell lymphomas as well as B and T precursor lymphoid neoplasias those entities with highest frequency of gene-associated DNA hypermethylation. We also observed a significant correlation between the number of hypermethylated and hypomethylated genes in several mature B-cell neoplasias, but not in precursor B- and T-cell leukemias. Most of the genes becoming hypermethylated contained promoters with high CpG content, and a significant fraction of them are targets of the polycomb repressor complex. Interestingly, T-cell prolymphocytic leukemias show low levels of DNA hypermethylation and a comparatively large number of hypomethylated genes, many of them showing an increased gene expression. Conclusions/Significance: We have characterized the DNA methylation profile of a wide range of different HNs entities. As well as identifying genes showing aberrant DNA methylation in certain HN subtypes, we also detected six genes—DBC1, DIO3, FZD9, HS3ST2, MOS, and MYOD1—that were significantly hypermethylated in B-cell, T-cell, and myeloid malignancies. These might therefore play an important role in the development of different HNs

    Microscopic Model of Charge Carrier Transfer in Complex Media

    Full text link
    We present a microscopic model of a charge carrier transfer under an action of a constant electric field in a complex medium. Generalizing previous theoretical approaches, we model the dynamical environment hindering the carrier motion by dynamic percolation, i.e., as a medium comprising particles which move randomly on a simple cubic lattice, constrained by hard-core exclusion, and may spontaneously annihilate and re-appear at some prescribed rates. We determine analytically the density profiles of the "environment" particles, as seen from the stationary moving charge carrier, and calculate its terminal velocity as the function of the applied field and other system parameters. We realize that for sufficiently small external fields the force exerted on the carrier by the "environment" particles shows a viscous-like behavior and define an analog of the Stokes formula for such dynamic percolative environments. The corresponding friction coefficient is also derived.Comment: appearing in Chem. Phys. Special Issue on Molecular Charge Transfer in Condensed Media - from Physics and Chemistry to Biology and Nano-Engineering, edited by A.Kornyshev (Imperial College London), M.Newton (Brookhaven Natl Lab) and J.Ulstrup (Technical University of Denmark

    Theory of continuum percolation III. Low density expansion

    Full text link
    We use a previously introduced mapping between the continuum percolation model and the Potts fluid (a system of interacting s-states spins which are free to move in the continuum) to derive the low density expansion of the pair connectedness and the mean cluster size. We prove that given an adequate identification of functions, the result is equivalent to the density expansion derived from a completely different point of view by Coniglio et al. [J. Phys A 10, 1123 (1977)] to describe physical clustering in a gas. We then apply our expansion to a system of hypercubes with a hard core interaction. The calculated critical density is within approximately 5% of the results of simulations, and is thus much more precise than previous theoretical results which were based on integral equations. We suggest that this is because integral equations smooth out overly the partition function (i.e., they describe predominantly its analytical part), while our method targets instead the part which describes the phase transition (i.e., the singular part).Comment: 42 pages, Revtex, includes 5 EncapsulatedPostscript figures, submitted to Phys Rev

    Transitions in the Horizontal Transport of Vertically Vibrated Granular Layers

    Full text link
    Motivated by recent advances in the investigation of fluctuation-driven ratchets and flows in excited granular media, we have carried out experimental and simulational studies to explore the horizontal transport of granular particles in a vertically vibrated system whose base has a sawtooth-shaped profile. The resulting material flow exhibits novel collective behavior, both as a function of the number of layers of particles and the driving frequency; in particular, under certain conditions, increasing the layer thickness leads to a reversal of the current, while the onset of transport as a function of frequency occurs gradually in a manner reminiscent of a phase transition. Our experimental findings are interpreted here with the help of extensive, event driven Molecular Dynamics simulations. In addition to reproducing the experimental results, the simulations revealed that the current may be reversed as a function of the driving frequency as well. We also give details about the simulations so that similar numerical studies can be carried out in a more straightforward manner in the future.Comment: 12 pages, 18 figure
    corecore