1,097 research outputs found
Michael Addition-Initiated Sequential Reactions from 1,3-Dicarbonyls for the Synthesis of Polycyclic Heterocycles
International audienceThis review aims to highlight the most significant recent developments on synthetic strategies involving consecutive, domino and multicomponent reactions featuring a Michael addition-initiating step for the synthesis of polycyclic heterocycles from 1,3-dicarbonyls. These original sequences constitute more efficient and eco-compatible alternatives to known synthetic approaches to heterocyclic compounds allowing for an even faster and highly desirable generation of molecular diversity and complexity
Reversible DNA i-motif to hairpin switching induced by copper(II) cations
i-Motif DNA structures have previously been utilised for many different nanotechnological applications, but all have used changes in pH to fold the DNA. Herein we describe how copper(ii) cations can alter the conformation of i-motif DNA into an alternative hairpin structure which is reversible by chelation with EDTA
Affinity chromatography in dynamic combinatorial libraries: one-pot amplification and isolation of a strongly binding receptor
We report the one-pot amplification and isolation of a nanomolar receptor in a multibuilding block aqueous dynamic combinatorial library using a polymer-bound template. By appropriate choice of a poly(N,N-dimethylacrylamide)-based support, unselective ion-exchange type behaviour between the oppositely charged cationic guest and polyanionic hosts was overcome, such that the selective molecular recognition arising in aqueous solution reactions is manifest also in the analogous templated solid phase DCL syntheses. The ability of a polymer bound template to identify and isolate a synthetic receptor via dynamic combinatorial chemistry was not compromised by the large size of the library, consisting of well over 140 theoretical members, demonstrating the practical advantages of a polymer-supported DCL methodology
Activation of 1,2- and 1,3-Ketoamides with Thiourea Organocatalyst for the Enantioselective Domino Synthesis of Fuctionalized Cyclohexanes
International audienceSeveral reactive sites of 1,2- and 1,3-ketoamides were successively exploited in two complementary domino transformations for the synthesis of polysubstituted monocyclic or bridged bicyclic cyclohexanes, with the creation of up to six stereogenic centers. In both cases, a chiral bifunctional thiourea organocatalyst allowed efficient control of chirality in the final carbocycle
Probing the limits of selectivity in a recognition-mediated reaction network embedded within a dynamic covalent library
This work was supported by the award of a Postgraduate Studentship from EPSRC (EP/K503162/1) to TK.Two recognition-mediated reaction processes operating through a reactive binary complex drive resolution of a 24-component dynamic covalent library, assembled from individual aldehydes and nucleophiles. The effectiveness of the library resolution and selective amplification of one recognition-enabled species over another is limited by the difference in the rates of the recognition-mediated reactive processes and strength of the recognition processes employed in the dynamic system.PostprintPeer reviewe
Recommended from our members
Dominant components of the Thoroughbred metabolome characterised by 1H‐NMR spectroscopy: a metabolite atlas of common biofluids
Summary
Reasons for performing study: Metabonomics is emerging as a powerful tool for disease screening and investigating mammalian metabolism. This study aims to create a metabolic framework by producing a preliminary reference guide for the normal equine metabolic milieu.
Objectives: To metabolically profile plasma, urine and faecal water from healthy racehorses using high resolution 1H-NMR spectroscopy and to provide a list of dominant metabolites present in each biofluid for the benefit of future research in this area.
Study design: This study was performed using seven Thoroughbreds in race training at a single time-point. Urine and faecal samples were collected non-invasively and plasma was obtained from samples taken for routine clinical chemistry purposes.
Methods: Biofluids were analysed using 1H-NMR spectroscopy. Metabolite assignment was achieved via a range of 1D and 2D experiments.
Results: A total of 102 metabolites were assigned across the three biological matrices. A core metabonome of 14 metabolites was ubiquitous across all biofluids. All biological matrices provided a unique window on different aspects of systematic metabolism. Urine was the most populated metabolite matrix with 65 identified metabolites, 39 of which were unique to this biological compartment. A number of these were related to gut microbial host co-metabolism. Faecal samples were the most metabolically variable between animals; acetate was responsible for the majority (28%) of this variation. Short chain fatty acids were the predominant features identified within this biofluid by 1H-NMR spectroscopy.
Conclusions: Metabonomics provides a platform for investigating complex and dynamic interactions between the host and its consortium of gut microbes and has the potential to uncover markers for health and disease in a variety of biofluids. Inherent variation in faecal extracts along with the relative abundance of microbial-mammalian metabolites in urine and invasive nature of plasma sampling, infers that urine is the most appropriate biofluid for the purposes of metabonomic analysis
An overview of the recent developments on fructooligosaccharide production and applications
Over the past years, many researchers have suggested
that deficiencies in the diet can lead to disease states
and that some diseases can be avoided through an adequate
intake of relevant dietary components. Recently, a great interest
in dietary modulation of the human gut has been registered.
Prebiotics, such as fructooligosaccharides (FOS), play a key
role in the improvement of gut microbiota balance and in
individual health. FOS are generally used as components of
functional foods, are generally regarded as safe (generally
recognized as safe status—from the Food and Drug Administration,
USA), and worth about 150€ per kilogram. Due to
their nutrition- and health-relevant properties, such as moderate
sweetness, low carcinogenicity, low calorimetric value,
and low glycemic index, FOS have been increasingly used
by the food industry. Conventionally, FOS are produced
through a two-stage process that requires an enzyme production
and purification step in order to proceed with the chemical
reaction itself. Several studies have been conducted on the
production of FOS, aiming its optimization toward the development
of more efficient production processes and their potential
as food ingredients. The improvement of FOS yield and
productivity can be achieved by the use of different fermentative
methods and different microbial sources of FOS producing
enzymes and the optimization of nutritional and
culture parameter; therefore, this review focuses on the latest
progresses in FOS research such as its production, functional
properties, and market data.Agencia de Inovacao (AdI)-Project BIOLIFE reference PRIME 03/347. Ana Dominguez acknowledges Fundacao para a Ciencia e a Tecnologia, Portugal, for her PhD grant reference SFRH/BD/23083/2005
Defining an olfactory receptor function in airway smooth muscle cells
Pathways that control, or can be exploited to alter, the increase in airway smooth muscle (ASM) mass and cellular remodeling that occur in asthma are not well defined. Here we report the expression of odorant receptors (ORs) belonging to the superfamily of G-protein coupled receptors (GPCRs), as well as the canonical olfaction machinery (G olf and AC3) in the smooth muscle of human bronchi. In primary cultures of isolated human ASM, we identified mRNA expression for multiple ORs. Strikingly, OR51E2 was the most highly enriched OR transcript mapped to the human olfactome in lung-resident cells. In a heterologous expression system, OR51E2 trafficked readily to the cell surface and showed ligand selectivity and sensitivity to the short chain fatty acids (SCFAs) acetate and propionate. These endogenous metabolic byproducts of the gut microbiota slowed the rate of cytoskeletal remodeling, as well as the proliferation of human ASM cells. These cellular responses in vitro were found in ASM from non-asthmatics and asthmatics, and were absent in OR51E2-deleted primary human ASM. These results demonstrate a novel chemo-mechanical signaling network in the ASM and serve as a proof-of-concept that a specific receptor of the gut-lung axis can be targeted to treat airflow obstruction in asthma.open0
Chemical Biology is.....
Chemical Biology is a relatively new field, and as such is not yet simply or succinctly defined. It includes such a wide range of fundamental problems that this commentary could only include just a few snapshots of potential areas of interest. Overarching themes and selected recent successes and ideas in chemical biology are described to illustrate broadly the scope of the field, but should not be taken as exhaustive. The Chemical Biology Section of Chemistry Central Journal is pleased to receive manuscripts describing research into all and any aspects of the subject
- …
