215 research outputs found
On Backtracking in Real-time Heuristic Search
Real-time heuristic search algorithms are suitable for situated agents that
need to make their decisions in constant time. Since the original work by Korf
nearly two decades ago, numerous extensions have been suggested. One of the
most intriguing extensions is the idea of backtracking wherein the agent
decides to return to a previously visited state as opposed to moving forward
greedily. This idea has been empirically shown to have a significant impact on
various performance measures. The studies have been carried out in particular
empirical testbeds with specific real-time search algorithms that use
backtracking. Consequently, the extent to which the trends observed are
characteristic of backtracking in general is unclear. In this paper, we present
the first entirely theoretical study of backtracking in real-time heuristic
search. In particular, we present upper bounds on the solution cost exponential
and linear in a parameter regulating the amount of backtracking. The results
hold for a wide class of real-time heuristic search algorithms that includes
many existing algorithms as a small subclass
Flow for Meta Control
The psychological state of flow has been linked to optimizing human
performance. A key condition of flow emergence is a match between the human
abilities and complexity of the task. We propose a simple computational model
of flow for Artificial Intelligence (AI) agents. The model factors the standard
agent-environment state into a self-reflective set of the agent's abilities and
a socially learned set of the environmental complexity. Maximizing the flow
serves as a meta control for the agent. We show how to apply the meta-control
policy to a broad class of AI control policies and illustrate our approach with
a specific implementation. Results in a synthetic testbed are promising and
open interesting directions for future work
Learning in Real-Time Search: A Unifying Framework
Real-time search methods are suited for tasks in which the agent is
interacting with an initially unknown environment in real time. In such
simultaneous planning and learning problems, the agent has to select its
actions in a limited amount of time, while sensing only a local part of the
environment centered at the agents current location. Real-time heuristic search
agents select actions using a limited lookahead search and evaluating the
frontier states with a heuristic function. Over repeated experiences, they
refine heuristic values of states to avoid infinite loops and to converge to
better solutions. The wide spread of such settings in autonomous software and
hardware agents has led to an explosion of real-time search algorithms over the
last two decades. Not only is a potential user confronted with a hodgepodge of
algorithms, but he also faces the choice of control parameters they use. In
this paper we address both problems. The first contribution is an introduction
of a simple three-parameter framework (named LRTS) which extracts the core
ideas behind many existing algorithms. We then prove that LRTA*, epsilon-LRTA*,
SLA*, and gamma-Trap algorithms are special cases of our framework. Thus, they
are unified and extended with additional features. Second, we prove
completeness and convergence of any algorithm covered by the LRTS framework.
Third, we prove several upper-bounds relating the control parameters and
solution quality. Finally, we analyze the influence of the three control
parameters empirically in the realistic scalable domains of real-time
navigation on initially unknown maps from a commercial role-playing game as
well as routing in ad hoc sensor networks
- …
