356 research outputs found
Interferometric Differential High-frequency Lock-in Probe for Laser-induced Vacuum Birefringence
We propose a measurement of laser-induced vacuum birefringence through the use of pulsed lasers coupled to femtosecond optical enhancement cavities. This measurement technique features cavity-enhanced pump and probe pulses, as well as an independent control pulse. The control pulse allows for a differential measurement where the final signal is obtained using high-frequency lock-in detection, greatly mitigating time-dependent cavity birefringence as an important and possibly prohibitive systematic effect. In addition, the method features the economical use of laser power and results in a relatively simple experimental setup
MYCOPLASMA STUDIES OF HUMAN LEUKEMIA *
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72000/1/j.1749-6632.1967.tb27701.x.pd
Recommended from our members
An HSEF for murine myeloid leukemia
In the past decade, a large amount of effort has gone into the development of hit size effectiveness functions (HSEFs), with the ultimate aim of replacing the present absorbed dose-RBE-Q system. However, the absorbed dose determined at the tissue level is incapable of providing information on single hits on (doses to) the single cell. As a result, it is necessary to resort to microdosimetry, which is capable of providing not only the number of hits on cells, but the distribution of hit sizes as well. From this information, an HSEF can be derived. However, to date there have been no sets of data available on animals exposed to radiations of several qualities, and for which microdosimetric data were available. The objective of the present set of experiments was to remedy this situation. Large numbers of mice were exposed to radiations of several different qualities, and were observed throughout their entire lifespan for the appearance of myeloid leukemia. The HSEF developed for this neoplasm is presented and discussed
Spontaneous mechanical oscillation of a DC driven single crystal
There is a large interest to decrease the size of mechanical oscillators
since this can lead to miniaturization of timing and frequency referencing
devices, but also because of the potential of small mechanical oscillators as
extremely sensitive sensors. Here we show that a single crystal silicon
resonator structure spontaneously starts to oscillate when driven by a constant
direct current (DC). The mechanical oscillation is sustained by an
electrothermomechanical feedback effect in a nanobeam, which operates as a
mechanical displacement amplifier. The displacement of the resonator mass is
amplified, because it modulates the resistive heating power in the nanobeam via
the piezoresistive effect, which results in a temperature variation that causes
a thermal expansion feedback-force from the nanobeam on the resonator mass.
This self-amplification effect can occur in almost any conducting material, but
is particularly effective when the current density and mechanical stress are
concentrated in beams of nano-scale dimensions
Genome-wide association study of REM sleep behavior disorder identifies polygenic risk and brain expression effects
Rapid-eye movement (REM) sleep behavior disorder (RBD), enactment of dreams during REM sleep, is an early clinical symptom of alpha-synucleinopathies and defines a more severe subtype. The genetic background of RBD and its underlying mechanisms are not well understood. Here, we perform a genome-wide association study of RBD, identifying five RBD risk loci near SNCA, GBA, TMEM175, INPP5F, and SCARB2. Expression analyses highlight SNCA-AS1 and potentially SCARB2 differential expression in different brain regions in RBD, with SNCA-AS1 further supported by colocalization analyses. Polygenic risk score, pathway analysis, and genetic correlations provide further insights into RBD genetics, highlighting RBD as a unique alpha-synucleinopathy subpopulation that will allow future early intervention
FUT6 deficiency compromises basophil function by selectively abrogating their sialyl-Lewis x expression
Understanding Communication of Sustainability Reporting: Application of Symbolic Convergence Theory (SCT)
The purpose of this paper is to investigate the nature of rhetoric and rhetorical strategies that are implicit in the standalone sustainability reporting of the top 24 companies of the Fortune 500 Global. We adopt Bormann’s (Q J Speech 58(4):396–407, 1972) SCT framework to study the rhetorical situation and how corporate sustainability reporting (CSR) messages can be communicated to the audience (public). The SCT concepts in the sustainability reporting’s communication are subject to different types of legitimacy strategies that are used by corporations as a validity and legitimacy claim in the reports. A content analysis has been conducted and structural coding schemes have been developed based on the literature. The schemes are applied to the SCT model which recognizes the symbolic convergent processes of fantasy among communicators in a Society. The study reveals that most of the sample companies communicate fantasy type and rhetorical vision in their corporate sustainability reporting. However, the disclosure or messages are different across locations and other taxonomies of the SCT framework. This study contributes to the current CSR literature about how symbolic or fantasy understandings can be interpreted by the users. It also discusses the persuasion styles that are adopted by the companies for communication purposes. This study is the theoretical extension of the SCT. Researchers may be interested in further investigating other online communication paths, such as human rights reports and director’s reports
Exploring the emergent identities of future physicians: Toward an understanding of the ideological socialization of osteopathic medical students
- …
