1,848 research outputs found

    Facial emotion processing in schizophrenia : a non-specific neuropsychological deficit?

    Get PDF
    Original article can be found at : http://journals.cambridge.org/ Copyright Cambridge University PressBackground: Identification of facial emotions has been found to be impaired in schizophrenia but there are uncertainties about the neuropsychological specificity of the finding. Method: Twenty-two patients with schizophrenia and 20 healthy controls were given tests requiring identification of facial emotion, judgement of the intensity of emotional expressions without identification, familiar face recognition and the Benton Facial Recognition Test (BFRT). The schizophrenia patients were selected to be relatively intellectually preserved. Results: The patients with schizophrenia showed no deficit in identifying facial emotion, although they were slower than the controls. They were, however, impaired on judging the intensity of emotional expression without identification. They showed impairment in recognizing familiar faces but not on the BFRT. Conclusions: When steps are taken to reduce the effects of general intellectual impairment, there is no deficit in identifying facial emotions in schizophrenia. There may, however, be a deficit in judging emotional intensity. The impairment found in naming familiar faces is consistent with other evidence of semantic memory impairment in the disorder.Peer reviewe

    Complex networks: new trends for the analysis of brain connectivity

    Full text link
    Today, the human brain can be studied as a whole. Electroencephalography, magnetoencephalography, or functional magnetic resonance imaging techniques provide functional connectivity patterns between different brain areas, and during different pathological and cognitive neuro-dynamical states. In this Tutorial we review novel complex networks approaches to unveil how brain networks can efficiently manage local processing and global integration for the transfer of information, while being at the same time capable of adapting to satisfy changing neural demands.Comment: Tutorial paper to appear in the Int. J. Bif. Chao

    Neural responses to facial and vocal expressions of fear and disgust

    Get PDF
    Neuropsychological studies report more impaired responses to facial expressions of fear than disgust in people with amygdala lesions, and vice versa in people with Huntington's disease. Experiments using functional magnetic resonance imaging (fMRI) have confirmed the role of the amygdala in the response to fearful faces and have implicated the anterior insula in the response to facial expressions of disgust. We used fMRI to extend these studies to the perception of fear and disgust from both facial and vocal expressions. Consistent with neuropsychological findings, both types of fearful stimuli activated the amygdala. Facial expressions of disgust activated the anterior insula and the caudate-putamen; vocal expressions of disgust did not significantly activate either of these regions. All four types of stimuli activated the superior temporal gyrus. Our findings therefore (i) support the differential localization of the neural substrates of fear and disgust; (ii) confirm the involvement of the amygdala in the emotion of fear, whether evoked by facial or vocal expressions; (iii) confirm the involvement of the anterior insula and the striatum in reactions to facial expressions of disgust; and (iv) suggest a possible general role for the perception of emotional expressions for the superior temporal gyrus

    Structural subnetwork evolution across the life-span: rich-club, feeder, seeder

    Full text link
    The impact of developmental and aging processes on brain connectivity and the connectome has been widely studied. Network theoretical measures and certain topological principles are computed from the entire brain, however there is a need to separate and understand the underlying subnetworks which contribute towards these observed holistic connectomic alterations. One organizational principle is the rich-club - a core subnetwork of brain regions that are strongly connected, forming a high-cost, high-capacity backbone that is critical for effective communication in the network. Investigations primarily focus on its alterations with disease and age. Here, we present a systematic analysis of not only the rich-club, but also other subnetworks derived from this backbone - namely feeder and seeder subnetworks. Our analysis is applied to structural connectomes in a normal cohort from a large, publicly available lifespan study. We demonstrate changes in rich-club membership with age alongside a shift in importance from 'peripheral' seeder to feeder subnetworks. Our results show a refinement within the rich-club structure (increase in transitivity and betweenness centrality), as well as increased efficiency in the feeder subnetwork and decreased measures of network integration and segregation in the seeder subnetwork. These results demonstrate the different developmental patterns when analyzing the connectome stratified according to its rich-club and the potential of utilizing this subnetwork analysis to reveal the evolution of brain architectural alterations across the life-span

    A unifying framework for measuring weighted rich clubs.

    Get PDF
    Network analysis can help uncover meaningful regularities in the organization of complex systems. Among these, rich clubs are a functionally important property of a variety of social, technological and biological networks. Rich clubs emerge when nodes that are somehow prominent or 'rich' (e.g., highly connected) interact preferentially with one another. The identification of rich clubs is non-trivial, especially in weighted networks, and to this end multiple distinct metrics have been proposed. Here we describe a unifying framework for detecting rich clubs which intuitively generalizes various metrics into a single integrated method. This generalization rests upon the explicit incorporation of randomized control networks into the measurement process. We apply this framework to real-life examples, and show that, depending on the selection of randomized controls, different kinds of rich-club structures can be detected, such as topological and weighted rich clubs.J.A. is supported by the NIH-Oxford-Cambridge Scholarship Program. P.P. is employed by Queen Mary University of London. M.R. is supported by the NARSAD Young Investigator and Isaac Newton Trust grants. E.T.B. is employed half-time by the University of Cambridge, UK, and half-time by GlaxoSmithKline (GSK). P.E.V. is supported by the Medical Research Council (grant number MR/K020706/1).This is the final version of the article. It first appeared from NPG via http://dx.doi.org/10.1038/srep0725

    Sustaining the Internet with Hyperbolic Mapping

    Full text link
    The Internet infrastructure is severely stressed. Rapidly growing overheads associated with the primary function of the Internet---routing information packets between any two computers in the world---cause concerns among Internet experts that the existing Internet routing architecture may not sustain even another decade. Here we present a method to map the Internet to a hyperbolic space. Guided with the constructed map, which we release with this paper, Internet routing exhibits scaling properties close to theoretically best possible, thus resolving serious scaling limitations that the Internet faces today. Besides this immediate practical viability, our network mapping method can provide a different perspective on the community structure in complex networks

    Temporal reproduction and its neuroanatomical correlates in adults with attention deficit hyperactivity disorder and their unaffected first-degree relatives

    Get PDF
    Background: Little is known about time perception, its putative role as cognitive endophenotype, and its neuroanatomical underpinnings in adults with attention deficit hyperactivity disorder (ADHD). Method: Twenty adults with ADHD, 20 unaffected first-degree relatives and 20 typically developing controls matched for age and gender undertook structural magnetic resonance imaging scans. Voxel-based morphometry with DARTEL was performed to obtain regional grey-matter volumes. Temporal processing was investigated as a putative cognitive endophenotype using a temporal reproduction paradigm. General linear modelling was employed to examine the relationship between temporal reproduction performances and grey-matter volumes. Results: ADHD participants were impaired in temporal reproduction and unaffected first-degree relatives performed in between their ADHD probands and typically developing controls. Increased grey-matter volume in the cerebellum was associated with poorer temporal reproduction performance. Conclusions: Adults with ADHD are impaired in time reproduction. Performances of the unaffected first-degree relatives are in between ADHD relatives and controls, suggesting that time reproduction might be a cognitive endophenotype for adult ADHD. The cerebellum is involved in time reproduction and might play a role in driving time performances

    Network Cosmology

    Full text link
    Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology

    Statistical Learning for Resting-State fMRI: Successes and Challenges

    Get PDF
    International audienceIn the absence of external stimuli, fluctuations in cerebral activity can be used to reveal intrinsic structures. Well-conditioned probabilistic models of this so-called resting-state activity are needed to support neuroscientific hypotheses. Exploring two specific descriptions of resting-state fMRI, namely spatial analysis and connectivity graphs, we discuss the progress brought by statistical learning techniques, but also the neuroscientific picture that they paint, and possible modeling pitfalls

    Avoiding catastrophic failure in correlated networks of networks

    Get PDF
    Networks in nature do not act in isolation but instead exchange information, and depend on each other to function properly. An incipient theory of Networks of Networks have shown that connected random networks may very easily result in abrupt failures. This theoretical finding bares an intrinsic paradox: If natural systems organize in interconnected networks, how can they be so stable? Here we provide a solution to this conundrum, showing that the stability of a system of networks relies on the relation between the internal structure of a network and its pattern of connections to other networks. Specifically, we demonstrate that if network inter-connections are provided by hubs of the network and if there is a moderate degree of convergence of inter-network connection the systems of network are stable and robust to failure. We test this theoretical prediction in two independent experiments of functional brain networks (in task- and resting states) which show that brain networks are connected with a topology that maximizes stability according to the theory.Comment: 40 pages, 7 figure
    corecore