257 research outputs found
The effects of parasitism and body length on positioning within wild fish shoals
The influence of body length and parasitism on the positioning behaviour of individuals in wild fish shoals was investigated by a novel means of capturing entire shoals of the banded killifish (Fundulus diaphanus, Lesueur) using a grid-net that maintained the two-dimensional positions of individuals within shoals.
Fish in the front section of a shoal were larger than those in the rear.
Individuals parasitized by the digenean trematode (Crassiphiala bulboglossa, Haitsma) showed a tendency to occupy the front of shoals. Parasitized fish were also found more in peripheral positions than central ones in a significant number of shoals.
Shoal geometry was affected by the overall parasite prevalence of shoal members; shoals with high parasite prevalence displayed increasingly phallanx-like shoal formations, whereas shoals with low prevalence were more elliptical.
There was no relationship between body length and parasite abundance or prevalence in the fish population which suggests body length and parasite status are independent predictors of positioning behaviour.
Solitary individuals found outside shoals were both more likely to be parasitized and had higher parasite abundance than individuals engaged in shoaling.
Differences in the shoaling behaviour of parasitized and unparasitized fish are discussed in the context of the adaptive manipulation hypothesis
Combining Tn-seq with comparative genomics identifies proteins uniquely essential in Shigella flexneri
Protein functions that are essential for the growth of bacterial pathogens provide promising targets for antibacterial treatment. This is especially true if those functions are uniquely essential for the pathogen, as this might allow the development of targeted antibiotics, i.e. those that disrupt essential functions only for the pathogenic bacteria.
Here we present the results of a Tn-seq experiment designed to detect essential protein coding genes in Shigella flexneri 2a 2457T on a genome-wide scale. Our results suggest that 471 protein-coding genes in this organism are critical for cellular growth in rich media. Comparing this set of essential genes (the essential gene complement) with their orthologues in the closely related organism Escherichia coli K12 BW25113 revealed a significant number of genes that are essential in Shigella but not in E. coli, suggesting that the functional correspondence of these proteins had changed. Notably, we also identified a set of functionally related genes that are essential in Shigella but which have no orthologues in E. coli.
We found an extreme bias in proteins that have evolved to provide essential functions, with many proteins essential in Shigella but not E. coli, but with none (or very few) being essential in E. coli but not Shigella. We also identify a set- of genes involved in nucleotide biosynthesis that are essential in Shigella, but which lack orthologues in E. coli.
Consequently, the data presented here suggest that the essential gene complement can quickly become organism specific, especially for pathogenic organisms whose genomes might have reduced robustness in their metabolic capacity (e.g. functional redundancy), or a reduced numbers of protein coding genes. These results thus open the possibility of developing antibiotic treatments that target differentially essential genes, which may exist even between very closely related strains of bacteria
Factors that affect proliferation of Salmonella in tomatoes post-harvest: the roles of seasonal effects, irrigation regime, crop and pathogen genotype
MAIN OBJECTIVES: Fresh fruits and vegetables become increasingly recognized as vehicles of human salmonellosis. Physiological, ecological, and environmental factors are all thought to contribute to the ability of Salmonella to colonize fruits and vegetables pre- and post-harvest. The goal of this study was to test how irrigation levels, fruit water congestion, crop and pathogen genotypes affect the ability of Salmonella to multiply in tomatoes post-harvest. EXPERIMENTAL DESIGN: Fruits from three tomato varieties, grown over three production seasons in two Florida locations, were infected with seven strains of Salmonella and their ability to multiply post-harvest in field-grown tomatoes was tested. The field experiments were set up as a two-factor factorial split plot experiment, with the whole-plot treatments arranged in a randomized complete-block design. The irrigation treatment (at three levels) was the whole-plot factor, and the split-plot factor was tomato variety, with three levels. The significance of the main, two-way, and three-way interaction effects was tested using the (type III) F-tests for fixed effects. Mean separation for each significant fixed effect in the model was performed using Tukey's multiple comparison testing procedure. MOST IMPORTANT DISCOVERIES AND SIGNIFICANCE: The irrigation regime per se did not affect susceptibility of the crop to post-harvest proliferation of Salmonella. However, Salmonella grew significantly better in water-congested tissues of green tomatoes. Tomato maturity and genotype, Salmonella genotype, and inter-seasonal differences were the strongest factors affecting proliferation. Red ripe tomatoes were significantly and consistently more conducive to proliferation of Salmonella. Tomatoes harvested in the driest, sunniest season were the most conducive to post-harvest proliferation of the pathogen. Statistically significant interactions between production conditions affected post-harvest susceptibility of the crop to the pathogen. UV irradiation of tomatoes post-harvest promoted Salmonella growth
Computer simulation of leadership, consensus decision making and collective behaviour in humans
The aim of this study is to evaluate the reliability of a
crowd simulation model developed by the authors by reproducing Dyer et al.’s experiments(published in Philosophical Transactions in 2009) on human leadership and
consensus decision-making in a computer-based environment.
The theoretical crowd model of the simulation environment is presented, and its results are compared and analysed against Dyer et al.’s original experiments.
It is concluded that the results are 11 largely consistent
with the experiments, which demonstrates the reliability of
the crowd model. Furthermore, the simulation data also reveals several additional new findings, namely:
1) the phenomena of sacrificing accuracy to reach a quicker
consensus decision found in ants colonies was also discovered in the simulation;
2) the ability of reaching consensus in groups has a direct
impact on the time and accuracy of arriving at the target
position;
3) the positions of the informed individuals or leaders
in the crowd could have significant impact on the overall
crowd movement;
4) the simulation also confirmed Dyer et al.’s anecdotal
evidence of the proportion of the leadership in large crowds
and its effect on crowd movement.
The potential applications of these findings are highlighted in the final discussion of this paper
AMPK in Pathogens
During host–pathogen interactions, a complex web of events is crucial for the outcome of infection. Pathogen recognition triggers powerful cellular signaling events that is translated into the induction and maintenance of innate and adaptive host immunity against infection. In opposition, pathogens employ active mechanisms to manipulate host cell regulatory pathways toward their proliferation and survival. Among these, subversion of host cell energy metabolism by pathogens is currently recognized to play an important role in microbial growth and persistence. Extensive studies have documented the role of AMP-activated protein kinase (AMPK) signaling, a central cellular hub involved in the regulation of energy homeostasis, in host–pathogen interactions. Here, we highlight the most recent advances detailing how pathogens hijack cellular metabolism by suppressing or increasing the activity of the host energy sensor AMPK. We also address the role of lower eukaryote AMPK orthologues in the adaptive process to the host microenvironment and their contribution for pathogen survival, differentiation, and growth. Finally, we review the effects of pharmacological or genetic AMPK modulation on pathogen growth and persistence.CIHR -Canadian Institutes of Health Researc
Consistency of Leadership in Shoals of Mosquitofish (Gambusia holbrooki) in Novel and in Familiar Environments
In social animal groups, an individual's spatial position is a major determinant of both predation risk and foraging rewards. Additionally, the occupation of positions in the front of moving groups is generally assumed to correlate with the initiation of group movements. However, whether some individuals are predisposed to consistently occupy certain positions and, in some instances, to consistently lead groups over time is as yet unresolved in many species. Using the mosquitofish (Gambusia holbrooki), we examined the consistency of individuals' spatial positions within a moving group over successive trials. We found that certain individuals consistently occupied front positions in moving groups and also that it was typically these individuals that initiated group decisions. The number of individuals involved in leading the group varied according to the amount of information held by group members, with a greater number of changes in leadership in a novel compared to a relatively familiar environment. Finally, our results show that the occupation of lead positions in moving groups was not explained by characteristics such as dominance, size or sex, suggesting that certain individuals are predisposed to leadership roles. This suggests that being a leader or a follower may to some extent be an intrinsic property of the individual
- …
