370 research outputs found
P- and T-violation Tests with Polarized Resonance Neutrons
The enhancements of CP-violating effects in resonance neutron
transmissionthrough polarized targets are studied for 2 possible versions of
experiment. The importance is stressed of error analysis and of pseudomagnetic
effects' compensation.Comment: 11 pages, LaTeX + 4 PostScript figure
Extraction of bounds on time-reversal non-invariance from neutron reactions
Ratios involving on-resonance measurements of the three-fold and five-fold
correlation cross sections for which the dependence on some of the unknown
spectroscopic data is eliminated are considered. Closed form expressions are
derived for the statistical distributions of these ratios. Implications for
bounds on the variance of matrix elements of time reversal non-invariant
nucleon-nucleon interactions are considered within a Bayesian framework and the
competitiveness with bounds from other experiments is evaluated. The prospects
for null five-fold correlation measurements improving by an order of magnitude
or more upon the current bound on a parity-conserving T-odd interaction are
good.Comment: 14 pages, to be published in Physics Letters
Limits of Time-Reversal Violating Interaction from Compound Nuclear Experiments
Mean square matrix elements of the time reversal invariance violating (TRIV)
interaction between the compound nuclear states are calculated within the
statistical model, using the explicit form of the TRIV interaction via the
-meson exchange. From the comparison of the calculated values with the
data known for reaction, and for
-correlation measurements in process, the
bounds on the TRIV constant are obtained {\bar g}_{\rho} \alt 1.8 \times
10^{-2} and {\bar g}_{\rho} \alt 1.1 \times 10^{-2}. The sensitivity of the
recently proposed detailed balance test experiments on isolated resonances in
to the value of is shown to be as high as to reach
values .Comment: Phys. Lett. B; to be published, 16 pages, REVTEX 3, no figure
Theory of parity violation in compound nuclear states; one particle aspects
In this work we formulate the reaction theory of parity violation in compound
nuclear states using Feshbach's projection operator formalism. We derive in
this framework a complete set of terms that contribute to the longitudinal
asymmetry measured in experiments with polarized epithermal neutrons. We also
discuss the parity violating spreading width resulting from this formalism. We
then use the above formalism to derive expressions which hold in the case when
the doorway state approximation is introduced. In applying the theory we limit
ourselves in this work to the case when the parity violating potential and the
strong interaction are one-body. In this approximation, using as the doorway
the giant spin-dipole resonance and employing well known optical potentials and
a time-reversal even, parity odd one-body interaction we calculate or estimate
the terms we derived. In our calculations we explicitly orthogonalize the
continuum and bound wave functions. We find the effects of orthogonalization to
be very important. Our conclusion is that the present one-body theory cannot
explain the average longitudinal asymmetry found in the recent polarized
neutron experiments. We also confirm the discrepancy, first pointed out by
Auerbach and Bowman, that emerges, between the calculated average asymmetry and
the parity violating spreading width, when distant doorways are used in the
theory.Comment: 37 pages, REVTEX, 5 figures not included (Postscript, available from
the authors
Random Matrices and Chaos in Nuclear Physics
The authors review the evidence for the applicability of random--matrix
theory to nuclear spectra. In analogy to systems with few degrees of freedom,
one speaks of chaos (more accurately: quantum chaos) in nuclei whenever
random--matrix predictions are fulfilled. An introduction into the basic
concepts of random--matrix theory is followed by a survey over the extant
experimental information on spectral fluctuations, including a discussion of
the violation of a symmetry or invariance property. Chaos in nuclear models is
discussed for the spherical shell model, for the deformed shell model, and for
the interacting boson model. Evidence for chaos also comes from random--matrix
ensembles patterned after the shell model such as the embedded two--body
ensemble, the two--body random ensemble, and the constrained ensembles. All
this evidence points to the fact that chaos is a generic property of nuclear
spectra, except for the ground--state regions of strongly deformed nuclei.Comment: 54 pages, 28 figure
A measurement of parity-violating gamma-ray asymmetries in polarized cold neutron capture on 35Cl, 113Cd, and 139La
An apparatus for measuring parity-violating asymmetries in gamma-ray emission
following polarized cold neutron capture was constructed as a 1/10th scale test
of the design for the forthcoming n+p->d+gamma experiment at LANSCE. The
elements of the polarized neutron beam, including a polarized 3He neutron spin
filter and a radio frequency neutron spin rotator, are described. Using CsI(Tl)
detectors and photodiode current mode readout, measurements were made of
asymmetries in gamma-ray emission following neutron capture on 35Cl, 113Cd, and
139La targets. Upper limits on the parity-allowed asymmetry were set at the level of 7 x 10^-6 for all three
targets. Parity-violating asymmetries were observed in
35Cl, A_gamma = (-29.1 +- 6.7) x 10^-6, and 139La, A_gamma = (-15.5 +- 7.1) x
10^-6, values consistent with previous measurements.Comment: 19 pages, 4 figures, submitted to Nucl. Instr. and Meth.
Parity Violation in Neutron Capture Reactions
In the last decade, the scattering of polarized neutrons on compound nucleus
resonances proved to be a powerful experimental technique for probing nuclear
parity violation. Longitudinal analyzing powers in neutron transmission
measurements on p-wave resonances in nuclei such as La and Th
were found to be as large as 10%. Here we examine the possibilities of carrying
out a parallel program to measure asymmetries in the ) reaction on
these same compound nuclear resonances. Symmetry-violating ) studies
can also show asymmetries as large as 10%, and have the advantage over
transmission experiments of allowing parity-odd asymmetries in several
different gamma-decay branches from the same resonance. Thus, studies of parity
violation in the reaction using high efficiency germanium
detectors at the Los Alamos Lujan facility, for example, could determine the
parity-odd nucleon-nucleon matrix elements in complex nuclei with high
accuracy. Additionally, simultaneous studies of the E1 and matrix
elements invol ved in these decays could be used to help constrain the
statistical theory of parity non-conservation in compound nuclei.Comment: 10 pages, 1 figur
- …
