344 research outputs found
Coexistence of antiferrodistortive and ferroelectric distortions at the PbTiO (001) surface
The c(22) reconstruction of (001) PbTiO surfaces is studied by
means of first principles calculations for paraelectric (non-polar) and
ferroelectric ([001] polarized) films. Analysis of the atomic displacements in
the near-surface region shows how the surface modifies the antiferrodistortive
(AFD) instability and its interaction with ferroelectric (FE) distortions. The
effect of the surface is found to be termination dependent. The AFD instability
is suppressed at the TiO termination while it is strongly enhanced,
relative to the bulk, at the PbO termination resulting in a c(2x2) surface
reconstruction which is in excellent agreement with experiments. We find that,
in contrast to bulk PbTiO, in-plane ferroelectricity at the PbO termination
does not suppress the AFD instability. The AFD and the in-plane FE distortions
are instead concurrently enhanced at the PbO termination. This leads to a novel
surface phase with coexisting FE and AFD distortions which is not found in
PbTiO bulk
A critical discussion of calculated modulated structures, Fermi surface nesting and phonon softening in magnetic shape memory alloys NiMn(Ga, Ge, Al) and CoMn(Ga, Ge)
A series of first principles calculations have been carried out in order to
discuss electronic structure, phonon dynamics, structural instabilities and the
nature of martensitic transformations of the Heusler alloys NiMn(Ga, Ge,
Al) and CoMn(Ga, Ge). The calculations show that besides electronic
pecularities like Fermi--surface nesting, hybridizing optical and acoustic
phonon modes are important for the stabilization of the modulated martensitic
structures.Comment: 3 pages, 4 figures, JEMS-200
Epitaxially strained [001]-(PbTiO)(PbZrO) superlattice and PbTiO from first principles
The effect of layer-by-layer heterostructuring and epitaxial strain on
lattice instabilities and related ferroelectric properties is investigated from
first principles for the [001]-(PbTiO)(PbZrO) superlattice and
pure PbTiO on a cubic substrate. The results for the superlattice show an
enhancement of the stability of the monoclinic r-phase with respect to pure
PbTiO. Analysis of the lattice instabilities of the relaxed centrosymmetric
reference structure computed within density functional perturbation theory
suggests that this results from the presence of two unstable zone-center modes,
one confined in the PbTiO layer and one in the PbZrO layer, which
produce in-plane and normal components of the polarization, respectively. The
zero-temperature dielectric response is computed and shown to be enhanced not
only near the phase boundaries, but throughout the r-phase. Analysis of the
analogous calculation for pure PbTiO is consistent with this
interpretation, and suggests useful approaches to engineering the dielectric
properties of artificially structured perovskite oxides.Comment: 8 pages, 5 figure
Arthroscopic biceps tendon tenodesis: the anchorage technical note
Treatment of long head biceps (LHB) tendon pathology has become an area of renewed interest and debate among orthopaedic surgeons in recent years. The background of this manuscript is a description of biceps tenodesis which ensure continual dynamic action of the tendon which depresses the head and impedes lateral translation. A new technique has been developed in order to treat LHB tendon irreversible structural abnormalities associated with cuff rotator lesions. This technique entails the construction of a biological anchor between the LHB and supraspinatus and/or infraspinatus tendons according to arthroscopic findings. The rationale, although not supported by biomechanical studies is to obtain a triple, biomechanical effect. The first of these biomechanical effects which we try to promote through the procedure of transposition is the elimination of the deviation and oblique angle which occurs as the LHB completes its intra-articular course prior to reaching the bicipital groove. Furthermore, we have found this technique extremely useful in the presence of large ruptures of the rotator cuff with muscle retraction. The most common complication associated to this particular method, observed in less than 3%, is failed biological fixation which manifests as subsidence of the tenodesis and consequent descent of the tendon with evident aesthetic deformit
Ab initio study of the phase diagram of epitaxial BaTiO3
Using a combination of first-principles and effective-Hamiltonian approaches,
we map out the structure of BaTiO3 under epitaxial constraints applicable to
growth on perovskite substrates. We obtain a phase diagram in temperature and
misfit strain that is qualitatively different from that reported by Pertsev et
al. [Phys. Rev. Lett. 80, 1988 (1998)], who based their results on an empirical
thermodynamic potential with parameters fitted at temperatures in the vicinity
of the bulk phase transitions. In particular, we find a region of `r phase' at
low temperature where Pertsev et al. have reported an `ac phase'. We expect our
results to be relevant to thin epitaxial films of BaTiO3 at low temperatures
and experimentally-achievable strains.Comment: 4 pages, with 4 postscript figures embedded. Uses REVTEX and epsf
macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/od_epi/index.htm
Dynamical properties of clean and H-covered W(110) surfaces
In recent years, the availability of high-resolution surface-sensitive experimental
techniques such as Helium atom scattering (HAS) and electron energy loss spectroscopy
(EELS) has opened new perspectives in the study of the dynamical properties
of solid surfaces. In particular, a great deal of experimental data are now
available on the phonon dispersions of surfaces of insulator, semiconductors, and
metals [1]. Among transition metals, the vibrational properties of the hydrogenated
W(llO) surface have attracted much attention because they display unusual and
unexpected features which are still poorly understood [2-6]. When a full monolayer
of hydrogen is adsorbed, the surface phonon spectrum undergoes a dramatic change
and an anomalous behavior appears
O adsorption and incipient oxidation of the Mg(0001) surface
First principles density functional calculations are used to study the early
oxidation stages of the Mg(0001) surface for oxygen coverages 1/16 <= Theta <=
3 monolayers. It is found that at very low coverages O is incorporated below
the topmost Mg layer in tetrahedral sites. At higher oxygen-load the binding in
on-surface sites is increased but at one monolayer coverage the on-surface
binding is still about 60 meV weaker than for subsurface sites. The subsurface
octahedral sites are found to be unfavorable compared to subsurface tetrahedral
sites and to on-surface sites. At higher coverages oxygen adsorbs both under
the surface and up. Our calculations predict island formation and clustering of
incorporated and adsorbed oxygen in agreement with previous calculations. The
calculated configurations are compared with the angle-scanned x-ray
photoelectron diffraction experiment to determine the geometrical structure of
the oxidized Mg(0001) surface.Comment: 10 pages, 5 figure
First-principles study of lattice instabilities in the ferromagnetic martensite NiMnGa
The phonon dispersion relations and elastic constants for ferromagnetic
NiMnGa in the cubic and tetragonally distorted Heusler structures are
computed using density-functional and density-functional perturbation theory
within the spin-polarized generalized-gradient approximation. For
, the TA tranverse acoustic branch along and
symmetry-related directions displays a dynamical instability at a wavevector
that depends on . Through examination of the Fermi-surface nesting and
electron-phonon coupling, this is identified as a Kohn anomaly. In the parent
cubic phase the computed tetragonal shear elastic constant,
C=(CC)/2, is close to zero, indicating a marginal
elastic instability towards a uniform tetragonal distortion. We conclude that
the cubic Heusler structure is unstable against a family of energy-lowering
distortions produced by the coupling between a uniform tetragonal distortion
and the corresponding modulation. The computed relation between the
ratio and the modulation wavevector is in excellent agreement with
structural data on the premartensitic ( = 1) and martensitic ( =
0.94) phases of NiMnGa.Comment: submitted to Phys. Rev.
- …
