1,062 research outputs found

    The 'granite encapsulation' route to the safe disposal of Pu and other actinide

    Get PDF
    Waste actinides, including plutonium, present a long-term management problem and a serious security issue. Immobilisation in mineral or ceramic waste forms for interim storage is a widely proposed first step. The safest, most secure geological disposal for Pu is in very deep boreholes and we propose that the key step to combination of these immobilisation and disposal concepts is encapsulation of the waste form in cylinders of recrystallized granite. We discuss the underpinning science, focusing on experimental work, and consider implementation. Finally, we present and discuss analyses of zircon, UO2 and Ce-doped cubic zirconia from high pressure and temperature experiments in granitic melts that demonstrate the viability of this solution and that actinides can be isolated from the environment for millions, maybe hundreds of millions, of years

    Coherent lidars based on intracavity heterodyning of echo signals

    Get PDF
    The development and technical realization of the method of laser sounding of the atmosphere based on the effects of mixing of reference and external fields of scattering inside a laser cavity are presented. An approximate theory of the method was developed on the basis of the investigations using the model of a three-mirror laser. The nonlinear effect of a wideband laser on frequency-dependent external influences of the atmosphere was investigated. The field measurements of gaseous composition of the atmosphere were performed on the basis of a given method of coherent reception using a tunable CO2 laser

    Laser and Plasma Assisted Fabrication of Nanoparticles in Liquids

    Get PDF
    In this paper capabilities of two plasma assisted methods based on a pulsed laser ablation and electrical discharges in liquid media for fabrication of metallic and composite nanoparticles are discussed

    Accuracy of Hydrogeological Calculations and Forecasts

    Get PDF
    Aquifer systems most often appear to be double-layered or multi-layered. The parameters of groundwater flow from adjacent horizons to the tested ones through separating low-permeable layers or the leakage of groundwater from the low-permeable overlapping layers are determined by the results of pumping. There are methods for determining the permeability parameters of tested horizons and flow parameters by the results of such pumping. However, the issue of assessment of flow parameter confidence remains current. This chapter proposes a method for performing such assessment. The method was tested on a specific example. The obtained error estimates for the parameters of a layered aquifer system are typical for groundwater filtration schemes in aquifers with overflow
    corecore