605 research outputs found
Pulse of inflammatory proteins in the pregnant uterus of European polecats (Mustela putorius) leading to the time of implantation
Uterine secretory proteins protect the uterus and conceptuses against infection, facilitate implantation, control cellular damage resulting from implantation, and supply pre-implantation embryos with nutrients. Unlike in humans, the early conceptus of the European polecat (Mustela putorius; ferret) grows and develops free in the uterus until implanting at about 12 days after mating. We found that the proteins appearing in polecat uteri changed dramatically with time leading to implantation. Several of these proteins have also been found in pregnant uteri of other eutherian mammals. However, we found a combination of two increasingly abundant proteins that have not been recorded before in pre-placentation uteri. First, the broad-spectrum proteinase inhibitor α2-macroglobulin rose to dominate the protein profile by the time of implantation. Its functions may be to limit damage caused by the release of proteinases during implantation or infection, and to control other processes around sites of implantation. Second, lipocalin-1 (also known as tear lipocalin) also increased substantially in concentration. This protein has not previously been recorded as a uterine secretion in pregnancy in any species. If polecat lipocalin-1 has similar biological properties to that of humans, then it may have a combined function in antimicrobial protection and transporting or scavenging lipids. The changes in the uterine secretory protein repertoire of European polecats is therefore unusual, and may be representative of pre-placentation supportive uterine secretions in mustelids (otters, weasels, badgers, mink, wolverines) in general
Predicting the outer membrane proteome of Pasteurella multocida based on consensus prediction enhanced by results integration and manual confirmation
Background
Outer membrane proteins (OMPs) of Pasteurella multocida have various functions related to virulence and pathogenesis and represent important targets for vaccine development. Various bioinformatic algorithms can predict outer membrane localization and discriminate OMPs by structure or function. The designation of a confident prediction framework by integrating different predictors followed by consensus prediction, results integration and manual confirmation will improve the prediction of the outer membrane proteome.
Results
In the present study, we used 10 different predictors classified into three groups (subcellular localization, transmembrane β-barrel protein and lipoprotein predictors) to identify putative OMPs from two available P. multocida genomes: those of avian strain Pm70 and porcine non-toxigenic strain 3480. Predicted proteins in each group were filtered by optimized criteria for consensus prediction: at least two positive predictions for the subcellular localization predictors, three for the transmembrane β-barrel protein predictors and one for the lipoprotein predictors. The consensus predicted proteins were integrated from each group into a single list of proteins. We further incorporated a manual confirmation step including a public database search against PubMed and sequence analyses, e.g. sequence and structural homology, conserved motifs/domains, functional prediction, and protein-protein interactions to enhance the confidence of prediction. As a result, we were able to confidently predict 98 putative OMPs from the avian strain genome and 107 OMPs from the porcine strain genome with 83% overlap between the two genomes.
Conclusions
The bioinformatic framework developed in this study has increased the number of putative OMPs identified in P. multocida and allowed these OMPs to be identified with a higher degree of confidence. Our approach can be applied to investigate the outer membrane proteomes of other Gram-negative bacteria
Genetic variation among lambs in peripheral IgE activity against the larval stages of <i>Teladorsagia circumcincta</i>
IgA and IgE activity against Teladorsagia circumcincta was investigated in a flock of Texel lambs following natural, mixed nematode infection among lambs. The distribution of IgA activity was similar to a gamma distribution whereas IgE activity was different. Box-Cox analysis demonstrated that X0.25 was a suitable transformation to normalise IgE responses. The transformed IgE activity was under moderate to strong genetic control. Nine different allergens were identified by proteomic analysis. Tropomyosin was selected for further analysis. IgE activity against tropomyosin was moderately heritable and associated with decreased egg counts and with reduced body weight at the time of sampling
Identification of ORC1/CDC6-interacting factors in trypanosoma brucei reveals critical features of origin recognition complex architecture
DNA Replication initiates by formation of a pre-replication complex on sequences termed origins. In eukaryotes, the pre-replication complex is composed of the Origin Recognition Complex (ORC), Cdc6 and the MCM replicative helicase in conjunction with Cdt1. Eukaryotic ORC is considered to be composed of six subunits, named Orc1–6, and monomeric Cdc6 is closely related in sequence to Orc1. However, ORC has been little explored in protists, and only a single ORC protein, related to both Orc1 and Cdc6, has been shown to act in DNA replication in Trypanosoma brucei. Here we identify three highly diverged putative T. brucei ORC components that interact with ORC1/CDC6 and contribute to cell division. Two of these factors are so diverged that we cannot determine if they are eukaryotic ORC subunit orthologues, or are parasite-specific replication factors. The other we show to be a highly diverged Orc4 orthologue, demonstrating that this is one of the most widely conserved ORC subunits in protists and revealing it to be a key element of eukaryotic ORC architecture. Additionally, we have examined interactions amongst the T. brucei MCM subunits and show that this has the conventional eukaryotic heterohexameric structure, suggesting that divergence in the T. brucei replication machinery is limited to the earliest steps in origin licensing
Structure of protease-cleaved escherichia coliα-2-macroglobulin reveals a putative mechanism of conformational activation for protease entrapment
Bacterial -2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleaved Escherichia coli -2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintain E. coli -2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture of Escherichia coli -2-macroglobulin and human -2-macroglobulin, this protease-activation mechanism is likely to operate across the diverse members of this group
Prolonged transition time between colostrum and mature milk in a bear, the giant panda, Ailuropoda melanoleuca
Bears produce the most altricial neonates of any placental mammal. We hypothesized that the transition from colostrum to mature milk in bears reflects a temporal and biochemical adaptation for altricial development and immune protection. Comparison of bear milks with milks of other eutherians yielded distinctive protein profiles. Proteomic and metabolomic analysis of serial milk samples collected from six giant pandas showed a prolonged transition from colostrum to main-phase lactation over approximately 30 days. Particularly striking are the persistence or sequential appearance of adaptive and innate immune factors. The endurance of immunoglobulin G suggests an unusual duration of trans-intestinal absorption of maternal antibodies, and is potentially relevant to the underdeveloped lymphoid system of giant panda neonates. Levels of certain milk oligosaccharides known to exert anti-microbial activities and/or that are conducive to the development of neonatal gut microbiomes underwent an almost complete changeover around days 20–30 postpartum, coincident with the maturation of the protein profile. A potential metabolic marker of starvation was detected, the prominence of which may reflect the natural postpartum period of anorexia in giant panda mothers. Early lactation in giant pandas, and possibly in other ursids, appears to be adapted for the unique requirements of unusually altricial eutherian neonates
Yersinia ruckeri isolates recovered from diseased Atlantic Salmon (Salmo salar) in Scotland are more diverse than those from Rainbow Trout (Oncorhynchus mykiss) and represent distinct subpopulations
Yersinia ruckeri is the etiological agent of enteric redmouth (ERM) disease of farmed salmonids. Enteric redmouth disease is traditionally associated with rainbow trout (Oncorhynchus mykiss, Walbaum), but its incidence in Atlantic salmon (Salmo salar) is increasing. Yersinia ruckeri isolates recovered from diseased Atlantic salmon have been poorly characterized, and very little is known about the relationship of the isolates associated with these two species. Phenotypic approaches were used to characterize 109 Y. ruckeri isolates recovered over a 14-year period from infected Atlantic salmon in Scotland; 26 isolates from infected rainbow trout were also characterized. Biotyping, serotyping, and comparison of outer membrane protein profiles identified 19 Y. ruckeri clones associated with Atlantic salmon but only five associated with rainbow trout; none of the Atlantic salmon clones occurred in rainbow trout and vice versa. These findings suggest that distinct subpopulations of Y. ruckeri are associated with each species. A new O serotype (designated O8) was identified in 56 biotype 1 Atlantic salmon isolates and was the most common serotype identified from 2006 to 2011 and in 2014, suggesting an increased prevalence during the time period sampled. Rainbow trout isolates were represented almost exclusively by the same biotype 2, serotype O1 clone that has been responsible for the majority of ERM outbreaks in this species within the United Kingdom since the 1980s. However, the identification of two biotype 2, serotype O8 isolates in rainbow trout suggests that vaccines containing serotypes O1 and O8 should be evaluated in both rainbow trout and Atlantic salmon for application in Scotland
Mastitomics, the integrated omics of bovine milk in an experimental model of Streptococcus uberis mastitis: 1. High abundance proteins, acute phase proteins and peptidomics
A peptidomic investigation of milk from an experimental model of Streptococcus uberis mastitis in dairy cows has incorporated a study of milk high abundance and acute phase (APP) proteins as well as analysis of low molecular weight peptide biomarkers. Intramammary infection (IMI) with S. uberis caused a shift in abundance from caseins, β-lactoglobulin and α-lactalbumin to albumin, lactoferrin and IgG with the increase in lactoferrin occurring last. The APP response of haptoglobin, mammary associated serum amyloid A3 and C-reactive protein occurred between 30–48 hours post challenge with peak concentrations of APPs at 72–96 hours post challenge and declined thereafter at a rate resembling the fall in bacterial count rather than the somatic cell count. A peptide biomarker panel for IMI based on capillary electrophoresis and mass spectrometry was developed. It comprised 77 identified peptides (IMI77) composed mainly of casein derived peptides but also including peptides of glycosylation dependent cell adhesion molecule and serum amyloid A. The panel had a biomarker classification score that increased from 36 hour to 81 hour post challenge, significantly differentiating infected from non-infected milk, thus suggesting potential as a peptide biomarker panel of bovine mastitis and specifically that of S. uberis origin. The use of omic technology has shown a multifactorial cross system reaction in high and low abundance proteins and their peptide derivatives with changes of over a thousand fold in analyte levels in response to S. uberis infection
- …
