3,164 research outputs found
Two cases of fungal keratitis caused by Metarhizium anisopliae
We present two cases of keratitis due to Metarhizium anisopliae in geographically separated areas of the United States. The isolates were microscopically similar but morphologically different and were identified by ribosomal DNA sequencing. Both isolates had low minimum inhibitory concentration (MIC) values to caspofungin and micafungin, but high MIC values to amphotericin B. The morphologic and antifungal susceptibility differences between the two isolates indicate possible polyphylogeny of the group. Keywords: Metarhizium, Fungal keratitis, Keratomycosis, Antifungal susceptibilit
SEED: a tool for disseminating systematic review data into Wikipedia
Wikipedia, the free-content online encyclopaedia, contains many heavily accessed pages relating to healthcare. Cochrane systematic reviews contain much high-grade evidence but dissemination into Wikipedia has been slow. New skills are needed to both translate and relocate data from Cochrane reviews to implant into Wikipedia pages. This letter introduces a programme to greatly simplify the process of disseminating the summary of findings of Cochrane reviews into Wikipedia pages
Improved performance of a rapid immunochromatographic assay for detection of PBP2a in non-Staphylococcus aureus staphylococcal species
Chaotic Friedmann-Robertson-Walker Cosmology
We show that the dynamics of a spatially closed Friedmann - Robertson -
Walker Universe conformally coupled to a real, free, massive scalar field, is
chaotic, for large enough field amplitudes. We do so by proving that this
system is integrable under the adiabatic approximation, but that the
corresponding KAM tori break up when non adiabatic terms are considered. This
finding is confirmed by numerical evaluation of the Lyapunov exponents
associated with the system, among other criteria. Chaos sets strong limitations
to our ability to predict the value of the field at the Big Crunch, from its
given value at the Big Bang. (Figures available on request)Comment: 28 pages, 11 figure
Evaluation of the effect of guidelines to reduce intravenous potassium infusions in ICU patients
Empirical Studies of Evolving Systems
This paper describes the results of the working group investigating the issues of empirical studies for
evolving systems. The groups found that there were many issues that were central to successful evolution and this
concluded that this is a very important area within software engineering. Finally nine main areas were selected for consideration. For each of these areas the central issues were identified as well as success factors. In some cases success stories were also described and the critical factors accounting for the success analysed. In some cases it was later found that a number of areas were so tightly coupled that it was important to discuss them together
Collective traffic-like movement of ants on a trail: dynamical phases and phase transitions
The traffic-like collective movement of ants on a trail can be described by a
stochastic cellular automaton model. We have earlier investigated its unusual
flow-density relation by using various mean field approximations and computer
simulations. In this paper, we study the model following an alternative
approach based on the analogy with the zero range process, which is one of the
few known exactly solvable stochastic dynamical models. We show that our theory
can quantitatively account for the unusual non-monotonic dependence of the
average speed of the ants on their density for finite lattices with periodic
boundary conditions. Moreover, we argue that the model exhibits a continuous
phase transition at the critial density only in a limiting case. Furthermore,
we investigate the phase diagram of the model by replacing the periodic
boundary conditions by open boundary conditions.Comment: 8 pages, 6 figure
Exponential-Potential Scalar Field Universes I: The Bianchi I Models
We obtain a general exact solution of the Einstein field equations for the
anisotropic Bianchi type I universes filled with an exponential-potential
scalar field and study their dynamics. It is shown, in agreement with previous
studies, that for a wide range of initial conditions the late-time behaviour of
the models is that of a power-law inflating FRW universe. This property, does
not hold, in contrast, when some degree of inhomogeneity is introduced, as
discussed in our following paper II.Comment: 16 pages, Plain LaTeX, 1 Figure to be sent on request, to appear in
Phys. Rev.
Cluster formation and anomalous fundamental diagram in an ant trail model
A recently proposed stochastic cellular automaton model ({\it J. Phys. A 35,
L573 (2002)}), motivated by the motions of ants in a trail, is investigated in
detail in this paper. The flux of ants in this model is sensitive to the
probability of evaporation of pheromone, and the average speed of the ants
varies non-monotonically with their density. This remarkable property is
analyzed here using phenomenological and microscopic approximations thereby
elucidating the nature of the spatio-temporal organization of the ants. We find
that the observations can be understood by the formation of loose clusters,
i.e. space regions of enhanced, but not maximal, density.Comment: 11 pages, REVTEX, with 11 embedded EPS file
Cyclin D1 repressor domain mediates proliferation and survival in prostate cancer.
Regulation of the androgen receptor (AR) is critical to prostate cancer (PCa) development; therefore, AR is the first line therapeutic target for disseminated tumors. Cell cycle-dependent accumulation of cyclin D1 negatively modulates the transcriptional regulation of AR through discrete, CDK4-independent mechanisms. The transcriptional corepressor function of cyclin D1 resides within a defined motif termed repressor domain (RD), and it was hypothesized that this motif could be utilized as a platform to develop new strategies for blocking AR function. Here, we demonstrate that expression of the RD peptide is sufficient to disrupt AR transcriptional activation of multiple, prostate-specific AR target genes. Importantly, these actions are sufficient to specifically inhibit S-phase progression in AR-positive PCa cells, but not in AR-negative cells or tested AR-positive cells of other lineages. As expected, impaired cell cycle progression resulted in a suppression of cell doubling. Additionally, cell death was observed in AR-positive cells that maintain androgen dependence and in a subset of castrate-resistant PCa cells, dependent on Akt activation status. Lastly, the ability of RD to cooperate with existing hormone therapies was examined, which revealed that RD enhanced the cellular response to an AR antagonist. Together, these data demonstrate that RD is sufficient to disrupt AR-dependent transcriptional and proliferative responses in PCa, and can enhance efficacy of AR antagonists, thus establishing the impetus for development of RD-based mimetics
- …
