5,803 research outputs found
Spectroscopic confirmation of a white dwarf companion to the B star 16 Dra
Using an Extreme Ultraviolet Explorer (EUVE) spectrum, we confirm the
identification of a white dwarf companion to the B9.5V star 16 Dra (HD150100),
and constrain its surface temperature to lie between 29,000K and 35,000K. This
is the third B star + white dwarf non-interacting Sirius-type binary to be
confirmed, after y Pup (HR2875, HD59635) and theta Hya (HR3665, HD79469). 16
Dra and its white dwarf companion are members of a larger resolved proper
motion system including the B9V star 17 Dra A (HD150117). The white dwarf must
have evolved from a progenitor more massive than this star, i.e. ~3.7 solar
masses. White dwarf companions to B stars are important since they set an
observational limit on the maximum mass for white dwarf progenitors, and can
potentially be used to investigate the high mass ends of the initial-final mass
relation and the white dwarf mass-radius relation.Comment: Accepted for publication in A&A, 22nd May 200
A search for hidden white dwarfs in the ROSAT EUV survey II: Discovery of a distant DA+F6/7V binary system in a direction of low density neutral hydrogen
We report the results of our final search for hot white dwarfs in unresolved,
Sirius-type, binary systems with IUE. One new system, RE J0500-364 (DA+F6/7V),
has been identified. This star appears to lie at a distance of between
500-1000pc, making it one of the most distant white dwarfs, if not the most
distant, to be detected in the EUV surveys. The very low line-of-sight neutral
hydrogen volume density to this object could place a lower limit on the length
of the Beta CMa interstellar tunnel of diffuse gas, which stretches away from
the Local Bubble in a similar direction to RE J0500-364.Comment: 1 LaTex file plus 15 figures; accepted for publication in Monthly
Notices of the Royal Astronomical Societ
A Survey for Photometric Variability in Isolated Magnetic White Dwarfs—Measuring their Spin Periods
We present the initial findings of a photometric survey of isolated magnetic white dwarfs (MWDs) carried out with the 1.0m Jacobus Kapteyn Telescope. Of our sample of 30 MWDs, we have observed variability in 17 (57%) over our observed timescales (minutes to years), with a further 11 requiring more data, and two that are non-variable at the 1% level. In total we have discovered possible variability in 15 targets that has not been reported before in the literature, and we have measured the spin period of five objects in our sample to within a few percent. We find no correlation between spin period, mass or temperature, but there may be a weak negative correlation between period and field strength for the short-period targets. We have identified 14 MWDs with low field strengths and low temperatures, which are candidates for having star spots on their surfaces and should be followed up with polarimetry. We have also found that three low-field, high temperature MWDs are unexpectedly variable, with no obvious mechanism to cause this
Evolved solar systems in Praesepe
"Copyright 2011 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics." Original paper can be found at: http://scitation.aip.org/"We have obtained near-IR photometry for the 11 Praesepe white dwarfs, to search for an excess indicative of a dusty debris disk. All the white dwarfs are in the DAZ temperature regime, however we find no indications of a disk around any white dwarf. We have, however determined that the radial velocity variable white dwarf WD0837+185 could have an unresolved T8 dwarf companion that would not be seen as a near-IR excess.Final Accepted Versio
Theta Hya: Spectroscopic identification of a second B star + white dwarf binary
We report the identification, in an Extreme Ultraviolet Explorer (EUVE)
spectrum, of a hot white dwarf companion to the 3rd magnitude late-B star Theta
Hya (HR3665, HD79469). This is the second B star + white dwarf binary to be
conclusively identified; Vennes, Berghofer and Christian (1997), and Burleigh
and Barstow (1998) had previously reported the spectroscopic discovery of a hot
white dwarf companion to the B5V star y Pup (HR2875). Since these two
degenerate stars must have evolved from main sequence progenitors more massive
than their B star companions, they can be used to place observational lower
limits on the maximum mass for white dwarf progenitors, and to investigate the
upper end of the initial-final mass relation. Assuming a pure hydrogen
composition, we constrain the temperature of the white dwarf companion to Theta
Hya to lie between 25,000K and 31,000K. We also predict that a third bright B
star, 16 Dra (B9.5V), might also be hiding an unresolved hot white dwarf
companion.Comment: 4 pages, 1 figure. Accepted for publication in Astronomy and
Astrophysic
Inferring Species Trees from Incongruent Multi-Copy Gene Trees Using the Robinson-Foulds Distance
We present a new method for inferring species trees from multi-copy gene
trees. Our method is based on a generalization of the Robinson-Foulds (RF)
distance to multi-labeled trees (mul-trees), i.e., gene trees in which multiple
leaves can have the same label. Unlike most previous phylogenetic methods using
gene trees, this method does not assume that gene tree incongruence is caused
by a single, specific biological process, such as gene duplication and loss,
deep coalescence, or lateral gene transfer. We prove that it is NP-hard to
compute the RF distance between two mul-trees, but it is easy to calculate the
generalized RF distance between a mul-tree and a singly-labeled tree. Motivated
by this observation, we formulate the RF supertree problem for mul-trees
(MulRF), which takes a collection of mul-trees and constructs a species tree
that minimizes the total RF distance from the input mul-trees. We present a
fast heuristic algorithm for the MulRF supertree problem. Simulation
experiments demonstrate that the MulRF method produces more accurate species
trees than gene tree parsimony methods when incongruence is caused by gene tree
error, duplications and losses, and/or lateral gene transfer. Furthermore, the
MulRF heuristic runs quickly on data sets containing hundreds of trees with up
to a hundred taxa.Comment: 16 pages, 11 figure
The Arizona Radio Observatory CO Mapping Survey of Galactic Molecular Clouds: III. The Serpens Cloud in CO J=2-1 and 13CO J=2-1 Emission
We mapped 12CO and 13CO J = 2-1 emission over 1.04 square deg of the Serpens
molecular cloud with 38 arcsec spatial and 0.3 km/s spectral resolution using
the Arizona Radio Observatory Heinrich Hertz Submillimeter telescope. Our maps
resolve kinematic properties for the entire Serpens cloud. We also compare our
velocity moment maps with known positions of Young Stellar Objects (YSOs) and
1.1 mm continuum emission. We find that 12CO is self-absorbed and 13CO is
optically thick in the Serpens core. Outside of the Serpens core, gas appears
in filamentary structures having LSR velocities which are blue-shifted by up to
2 km/s relative to the 8 km/s systemic velocity of the Serpens cloud. We show
that the known Class I, Flat, and Class II YSOs in the Serpens core most likely
formed at the same spatial location and have since drifted apart. The spatial
and velocity structure of the 12CO line ratios implies that a detailed
3-dimensional radiative transfer model of the cloud will be necessary for full
interpretation of our spectral data. The starless cores region of the cloud is
likely to be the next site of star formation in Serpens.Comment: 41 pages, 15 figure
Hubble Space Telescope Imaging and Spectroscopy of the Sirius-Like Triple Star System HD 217411
We present Hubble Space Telescope imaging and spectroscopy of HD 217411, a G3
V star associated with the extreme ultraviolet excess source (EUV 2RE
J2300-07.0). This star is revealed to be a triple system with a G 3V primary
(HD 217411 A) separated by ~1.1" from a secondary that is in turn composed of
an unresolved K0 V star (HD 217411 Ba) and a hot DA white dwarf (HD 217411 Bb).
The hot white dwarf dominates the UV flux of the system. However; it is in turn
dominated by the K0 V component beyond 3000 {\AA}. A revised distance of 143 pc
is estimated for the system. A low level photometric modulation having a period
of 0.61 days has also been observed in this system along with a rotational
velocity on the order of 60 km s-1 in the K0 V star. Together both observations
point to a possible wind induced spin up of the K0 V star during the AGB phase
of the white dwarf. The nature of all three components is discussed as are
constraints on the orbits, system age and evolution.Comment: 11 pages, 6 figure
- …
