134 research outputs found
Music Attenuates Excessive Visual Guidance of Skilled Reaching in Advanced but Not Mild Parkinson's Disease
Parkinson's disease (PD) results in movement and sensory impairments that can be reduced by familiar music. At present, it is unclear whether the beneficial effects of music are limited to lessening the bradykinesia of whole body movement or whether beneficial effects also extend to skilled movements of PD subjects. This question was addressed in the present study in which control and PD subjects were given a skilled reaching task that was performed with and without accompanying preferred musical pieces. Eye movements and limb use were monitored with biomechanical measures and limb movements were additionally assessed using a previously described movement element scoring system. Preferred musical pieces did not lessen limb and hand movement impairments as assessed with either the biomechanical measures or movement element scoring. Nevertheless, the PD patients with more severe motor symptoms as assessed by Hoehn and Yahr (HY) scores displayed enhanced visual engagement of the target and this impairment was reduced during trials performed in association with accompanying preferred musical pieces. The results are discussed in relation to the idea that preferred musical pieces, although not generally beneficial in lessening skilled reaching impairments, may normalize the balance between visual and proprioceptive guidance of skilled reaching
Kinesthetic Sensitivity and Related Measures of Hand Sensitivity in Children With Nonproficient Handwriting
Automated postural responses are modified in a functional manner by instruction.
Contains fulltext :
70025.pdf (publisher's version ) (Open Access)The restoration of upright balance after a perturbation relies on highly automated and, to a large extent, stereotyped postural responses. Although these responses occur before voluntary control comes into play, previous research has shown that they can be functionally modulated on the basis of cognitive set (experience, advanced warning, instruction, etc.). It is still unknown, however, how the central nervous system deals with situations in which the postural response is not necessarily helpful in the execution of a task. In the present study, the effects of instruction on automated postural responses in neck, trunk, shoulder, and leg muscles were investigated when people were either instructed to recover balance after being released from an inclined standing posture [balance recovery (BR) trials], or not to recover at all and fall onto a safety mattress in the most comfortable way [fall (F) trials], in both backward and leftward directions. Participants were highly successful in following the instructions, consistently exhibiting stepping responses for balance recovery in BR trials, and suppressing stepping in the F trials. Yet EMG recordings revealed similar postural responses with onset latencies between 70 and 130 ms in both BR and F trials, with slightly delayed responses in F trials. In contrast, very pronounced and early differences were observed between BR and F trials in response amplitudes, which were generally much higher in BR than in F trials, but with clear differentiation between muscles and perturbation directions. These results indicate that a balance perturbation always elicits a postural response, irrespective of the task demands. However, when a specific balance recovery response is not desired after a perturbation, postural responses can be selectively downregulated and integrated into the motor output in a functional and goal-oriented way
Stroke-induced synergistic phase shifting and its possible implications for recovery mechanisms
Consistency in Administration and Response for the Backward Push and Release Test: A Clinical Assessment of Postural Responses
- …
