9,730 research outputs found
Theoretical Interpretation of the Measurements of the Secondary Eclipses of TrES-1 and HD209458b
We calculate the planet-star flux-density ratios as a function of wavelength
from 0.5 microns to 25 microns for the transiting extrasolar giant planets
TrES-1 and HD209458b and compare them with the recent Spitzer/IRAC-MIPS
secondary eclipse data in the 4.5, 8.0, and 24 micron bands. With only three
data points and generic calibration issues, detailed conclusions are difficult,
but inferences regarding atmospheric composition, temperature, and global
circulation can be made. Our models reproduce the observations reasonably well,
but not perfectly, and we speculate on the theoretical consequences of
variations around our baseline models. One preliminary conclusion is that we
may be seeing in the data indications that the day side of a close-in
extrasolar giant planet is brighter in the mid-infrared than its night side,
unlike Jupiter and Saturn. This correspondence will be further tested when the
data anticipated in other Spitzer bands are acquired, and we make predictions
for what those data may show.Comment: 15 pages, including 3 color figures, submitted to the Astrophysical
Journa
Pulsar Kicks Induced by Spin Flavor Oscillations of Neutrinos in Gravitational Fields
The origin of pulsar kicks is reviewed in the framework of the spin-flip
conversion of neutrinos propagating in the gravitational field of a magnetized
protoneutron star. We find that for a mass in rotation with angular velocity
{\bbox \omega}, the spin connections entering in the Dirac equation give rise
to the coupling term {\bbox \omega}\cdot {\bf p}, being the
neutrino momentum. Such a coupling can be responsible of pulsar kicks owing to
the neutrino emission asymmetry generated by the relative orientation of with respect to {\bbox \omega}. For our estimations, the large non
standard neutrino magnetic momentum, , is
considered.Comment: 8 pages, no figures. Changed content and references adde
Numerical Toy-Model Calculation of the Nucleon Spin Autocorrelation Function in a Supernova Core
We develop a simple model for the evolution of a nucleon spin in a hot and
dense nuclear medium. A given nucleon is limited to one-dimensional motion in a
distribution of external, spin-dependent scattering potentials. We calculate
the nucleon spin autocorrelation function numerically for a variety of
potential densities and distributions which are meant to bracket realistic
conditions in a supernova core. For all plausible configurations the width of
the spin-density structure function is found to be less than the temperature.
This is in contrast with a naive perturbative calculation based on the one-pion
exchange potential which overestimates the width and thus suggests a large
suppression of the neutrino opacities by nucleon spin fluctuations. Our results
suggest that it may be justified to neglect the collisional broadening of the
spin-density structure function for the purpose of estimating the neutrino
opacities in the deep inner core of a supernova. On the other hand, we find no
indication that processes such as axion or neutrino pair emission, which depend
on nucleon spin fluctuations, are substantially suppressed beyond the
multiple-scattering effect already discussed in the literature. Aside from
these practical conclusions, our model reveals a number of interesting and
unexpected insights. For example, the spin-relaxation rate saturates with
increasing potential strength only if bound states are not allowed to form by
including a repulsive core. There is no saturation with increasing density of
scattering potentials until localized eigenstates of energy begin to form.Comment: 14 latex pages in two-column format, 15 postscript figures included,
uses revtex.sty and epsf.sty. Submitted to Physical Review
Particle Acceleration at Relativistic Shocks in Extragalactic Systems
Diffusive shock acceleration (DSA) at relativistic shocks is expected to be
an important acceleration mechanism in a variety of astrophysical objects
including extragalactic jets in active galactic nuclei and gamma ray bursts.
These sources remain strong and interesting candidate sites for the generation
of ultra-high energy cosmic rays. In this paper, key predictions of DSA at
relativistic shocks that are salient to the issue of cosmic ray ion and
electron production are outlined. Results from a Monte Carlo simulation of such
diffusive acceleration in test-particle, relativistic, oblique, MHD shocks are
presented. Simulation output is described for both large angle and small angle
scattering scenarios, and a variety of shock obliquities including superluminal
regimes when the de Hoffman-Teller frame does not exist. The distribution
function power-law indices compare favorably with results from other
techniques. They are found to depend sensitively on the mean magnetic field
orientation in the shock, and the nature of MHD turbulence that propagates
along fields in shock environs. An interesting regime of flat spectrum
generation is addressed, providing evidence for its origin being due to shock
drift acceleration. The impact of these theoretical results on gamma-ray burst
and blazar science is outlined. Specifically, Fermi gamma-ray observations of
these cosmic sources are already providing significant constraints on important
environmental quantities for relativistic shocks, namely the frequency of
scattering and the level of field turbulence.Comment: 11 pages, 6 figures, to appear in Proc. of the 8th International
Astrophysics Conference "Shock Waves in Space and Astrophysical Environments"
(2010), eds. X. Ao, R. Burrows and G. P. Zank (AIP Conf. Proc., New York
Electromechanical systems with transient high power response operating from a resonant AC link
The combination of an inherently robust asynchronous (induction) electrical machine with the rapid control of energy provided by a high frequency resonant AC link enables the efficient management of higher power levels with greater versatility. This could have a variety of applications from launch vehicles to all-electric automobiles. These types of systems utilize a machine which is operated by independent control of both the voltage and frequency. This is made possible by using an indirect field-oriented control method which allows instantaneous torque control in all four operating quadrants. Incorporating the AC link allows the converter in these systems to switch at the zero crossing of every half cycle of the AC waveform. This zero loss switching of the link allows rapid energy variations to be achieved without the usual frequency proportional switching loss. Several field-oriented control systems were developed by LeRC and General Dynamics Space Systems Division under contract to NASA. A description of a single motor, electromechanical actuation system is presented. Then, focus is on a conceptual design for an AC electric vehicle. This design incorporates an induction motor/generator together with a flywheel for peak energy storage. System operation and implications along with the associated circuitry are addressed. Such a system would greatly improve all-electric vehicle ranges over the Federal Urban Driving Cycle (FUD)
Mu and Tau Neutrino Thermalization and Production in Supernovae: Processes and Timescales
We investigate the rates of production and thermalization of and
neutrinos at temperatures and densities relevant to core-collapse
supernovae and protoneutron stars. Included are contributions from electron
scattering, electron-positron annihilation, nucleon-nucleon bremsstrahlung, and
nucleon scattering. For the scattering processes, in order to incorporate the
full scattering kinematics at arbitrary degeneracy, the structure function
formalism developed by Reddy et al. (1998) and Burrows and Sawyer (1998) is
employed. Furthermore, we derive formulae for the total and differential rates
of nucleon-nucleon bremsstrahlung for arbitrary nucleon degeneracy in
asymmetric matter. We find that electron scattering dominates nucleon
scattering as a thermalization process at low neutrino energies
( MeV), but that nucleon scattering is always faster
than or comparable to electron scattering above MeV. In
addition, for g cm, MeV, and
neutrino energies MeV, nucleon-nucleon bremsstrahlung always
dominates electron-positron annihilation as a production mechanism for
and neutrinos.Comment: 29 pages, LaTeX (RevTeX), 13 figures, submitted to Phys. Rev. C. Also
to be found at anonymous ftp site http://www.astrophysics.arizona.edu; cd to
pub/thompso
Supernova Neutrino Opacity from Nucleon-Nucleon Bremsstrahlung and Related Processes
Elastic scattering on nucleons, \nu N -> N \nu, is the dominant supernova
(SN) opacity source for \mu and \tau neutrinos. The dominant energy- and
number-changing processes were thought to be \nu e^- -> e^- \nu and \nu\bar \nu
e^+ e^- until Suzuki (1993) showed that the bremsstrahlung process \nu\bar
\nu NN NN was actually more important. We find that for energy exchange,
the related ``inelastic scattering process'' \nu NN NN \nu is even more
effective by about a factor of 10. A simple estimate implies that the \nu_\mu
and \nu_\tau spectra emitted during the Kelvin-Helmholtz cooling phase are much
closer to that of \nu\bar_e than had been thought previously. To facilitate a
numerical study of the spectra formation we derive a scattering kernel which
governs both bremsstrahlung and inelastic scattering and give an analytic
approximation formula. We consider only neutron-neutron interactions, we use a
one-pion exchange potential in Born approximation, nonrelativistic neutrons,
and the long-wavelength limit, simplifications which appear justified for the
surface layers of a SN core. We include the pion mass in the potential and we
allow for an arbitrary degree of neutron degeneracy. Our treatment does not
include the neutron-proton process and does not include nucleon-nucleon
correlations. Our perturbative approach applies only to the SN surface layers,
i.e. to densities below about 10^{14} g cm^{-3}.Comment: 36 pages, LaTeX, 6 postscript figs included, matches version accepted
for publication in Astrophysical Journa
Ab initio Translationally Invariant Nonlocal One-body Densities from No-core Shell-model Theory
[Background:] It is well known that effective nuclear interactions are in
general nonlocal. Thus if nuclear densities obtained from {\it ab initio}
no-core-shell-model (NCSM) calculations are to be used in reaction
calculations, translationally invariant nonlocal densities must be available.
[Purpose:] Though it is standard to extract translationally invariant one-body
local densities from NCSM calculations to calculate local nuclear observables
like radii and transition amplitudes, the corresponding nonlocal one-body
densities have not been considered so far. A major reason for this is that the
procedure for removing the center-of-mass component from NCSM wavefunctions up
to now has only been developed for local densities. [Results:] A formulation
for removing center-of-mass contributions from nonlocal one-body densities
obtained from NCSM and symmetry-adapted NCSM (SA-NCSM) calculations is derived,
and applied to the ground state densities of He, Li, C, and
O. The nonlocality is studied as a function of angular momentum
components in momentum as well as coordinate space [Conclusions:] We find that
the nonlocality for the ground state densities of the nuclei under
consideration increases as a function of the angular momentum. The relative
magnitude of those contributions decreases with increasing angular momentum. In
general, the nonlocal structure of the one-body density matrices we studied is
given by the shell structure of the nucleus, and can not be described with
simple functional forms.Comment: 13 pages, 11 Figure
- …
