9,730 research outputs found

    Theoretical Interpretation of the Measurements of the Secondary Eclipses of TrES-1 and HD209458b

    Full text link
    We calculate the planet-star flux-density ratios as a function of wavelength from 0.5 microns to 25 microns for the transiting extrasolar giant planets TrES-1 and HD209458b and compare them with the recent Spitzer/IRAC-MIPS secondary eclipse data in the 4.5, 8.0, and 24 micron bands. With only three data points and generic calibration issues, detailed conclusions are difficult, but inferences regarding atmospheric composition, temperature, and global circulation can be made. Our models reproduce the observations reasonably well, but not perfectly, and we speculate on the theoretical consequences of variations around our baseline models. One preliminary conclusion is that we may be seeing in the data indications that the day side of a close-in extrasolar giant planet is brighter in the mid-infrared than its night side, unlike Jupiter and Saturn. This correspondence will be further tested when the data anticipated in other Spitzer bands are acquired, and we make predictions for what those data may show.Comment: 15 pages, including 3 color figures, submitted to the Astrophysical Journa

    Pulsar Kicks Induced by Spin Flavor Oscillations of Neutrinos in Gravitational Fields

    Get PDF
    The origin of pulsar kicks is reviewed in the framework of the spin-flip conversion of neutrinos propagating in the gravitational field of a magnetized protoneutron star. We find that for a mass in rotation with angular velocity {\bbox \omega}, the spin connections entering in the Dirac equation give rise to the coupling term {\bbox \omega}\cdot {\bf p}, being p{\bf p} the neutrino momentum. Such a coupling can be responsible of pulsar kicks owing to the neutrino emission asymmetry generated by the relative orientation of p{\bf p} with respect to {\bbox \omega}. For our estimations, the large non standard neutrino magnetic momentum, μν1011μB\mu_\nu \lesssim 10^{-11}\mu_B, is considered.Comment: 8 pages, no figures. Changed content and references adde

    Numerical Toy-Model Calculation of the Nucleon Spin Autocorrelation Function in a Supernova Core

    Full text link
    We develop a simple model for the evolution of a nucleon spin in a hot and dense nuclear medium. A given nucleon is limited to one-dimensional motion in a distribution of external, spin-dependent scattering potentials. We calculate the nucleon spin autocorrelation function numerically for a variety of potential densities and distributions which are meant to bracket realistic conditions in a supernova core. For all plausible configurations the width of the spin-density structure function is found to be less than the temperature. This is in contrast with a naive perturbative calculation based on the one-pion exchange potential which overestimates the width and thus suggests a large suppression of the neutrino opacities by nucleon spin fluctuations. Our results suggest that it may be justified to neglect the collisional broadening of the spin-density structure function for the purpose of estimating the neutrino opacities in the deep inner core of a supernova. On the other hand, we find no indication that processes such as axion or neutrino pair emission, which depend on nucleon spin fluctuations, are substantially suppressed beyond the multiple-scattering effect already discussed in the literature. Aside from these practical conclusions, our model reveals a number of interesting and unexpected insights. For example, the spin-relaxation rate saturates with increasing potential strength only if bound states are not allowed to form by including a repulsive core. There is no saturation with increasing density of scattering potentials until localized eigenstates of energy begin to form.Comment: 14 latex pages in two-column format, 15 postscript figures included, uses revtex.sty and epsf.sty. Submitted to Physical Review

    Particle Acceleration at Relativistic Shocks in Extragalactic Systems

    Full text link
    Diffusive shock acceleration (DSA) at relativistic shocks is expected to be an important acceleration mechanism in a variety of astrophysical objects including extragalactic jets in active galactic nuclei and gamma ray bursts. These sources remain strong and interesting candidate sites for the generation of ultra-high energy cosmic rays. In this paper, key predictions of DSA at relativistic shocks that are salient to the issue of cosmic ray ion and electron production are outlined. Results from a Monte Carlo simulation of such diffusive acceleration in test-particle, relativistic, oblique, MHD shocks are presented. Simulation output is described for both large angle and small angle scattering scenarios, and a variety of shock obliquities including superluminal regimes when the de Hoffman-Teller frame does not exist. The distribution function power-law indices compare favorably with results from other techniques. They are found to depend sensitively on the mean magnetic field orientation in the shock, and the nature of MHD turbulence that propagates along fields in shock environs. An interesting regime of flat spectrum generation is addressed, providing evidence for its origin being due to shock drift acceleration. The impact of these theoretical results on gamma-ray burst and blazar science is outlined. Specifically, Fermi gamma-ray observations of these cosmic sources are already providing significant constraints on important environmental quantities for relativistic shocks, namely the frequency of scattering and the level of field turbulence.Comment: 11 pages, 6 figures, to appear in Proc. of the 8th International Astrophysics Conference "Shock Waves in Space and Astrophysical Environments" (2010), eds. X. Ao, R. Burrows and G. P. Zank (AIP Conf. Proc., New York

    Electromechanical systems with transient high power response operating from a resonant AC link

    Get PDF
    The combination of an inherently robust asynchronous (induction) electrical machine with the rapid control of energy provided by a high frequency resonant AC link enables the efficient management of higher power levels with greater versatility. This could have a variety of applications from launch vehicles to all-electric automobiles. These types of systems utilize a machine which is operated by independent control of both the voltage and frequency. This is made possible by using an indirect field-oriented control method which allows instantaneous torque control in all four operating quadrants. Incorporating the AC link allows the converter in these systems to switch at the zero crossing of every half cycle of the AC waveform. This zero loss switching of the link allows rapid energy variations to be achieved without the usual frequency proportional switching loss. Several field-oriented control systems were developed by LeRC and General Dynamics Space Systems Division under contract to NASA. A description of a single motor, electromechanical actuation system is presented. Then, focus is on a conceptual design for an AC electric vehicle. This design incorporates an induction motor/generator together with a flywheel for peak energy storage. System operation and implications along with the associated circuitry are addressed. Such a system would greatly improve all-electric vehicle ranges over the Federal Urban Driving Cycle (FUD)

    Mu and Tau Neutrino Thermalization and Production in Supernovae: Processes and Timescales

    Full text link
    We investigate the rates of production and thermalization of νμ\nu_\mu and ντ\nu_\tau neutrinos at temperatures and densities relevant to core-collapse supernovae and protoneutron stars. Included are contributions from electron scattering, electron-positron annihilation, nucleon-nucleon bremsstrahlung, and nucleon scattering. For the scattering processes, in order to incorporate the full scattering kinematics at arbitrary degeneracy, the structure function formalism developed by Reddy et al. (1998) and Burrows and Sawyer (1998) is employed. Furthermore, we derive formulae for the total and differential rates of nucleon-nucleon bremsstrahlung for arbitrary nucleon degeneracy in asymmetric matter. We find that electron scattering dominates nucleon scattering as a thermalization process at low neutrino energies (ϵν10\epsilon_\nu\lesssim 10 MeV), but that nucleon scattering is always faster than or comparable to electron scattering above ϵν10\epsilon_\nu\simeq10 MeV. In addition, for ρ1013\rho\gtrsim 10^{13} g cm3^{-3}, T14T\lesssim14 MeV, and neutrino energies 60\lesssim60 MeV, nucleon-nucleon bremsstrahlung always dominates electron-positron annihilation as a production mechanism for νμ\nu_\mu and ντ\nu_\tau neutrinos.Comment: 29 pages, LaTeX (RevTeX), 13 figures, submitted to Phys. Rev. C. Also to be found at anonymous ftp site http://www.astrophysics.arizona.edu; cd to pub/thompso

    Supernova Neutrino Opacity from Nucleon-Nucleon Bremsstrahlung and Related Processes

    Full text link
    Elastic scattering on nucleons, \nu N -> N \nu, is the dominant supernova (SN) opacity source for \mu and \tau neutrinos. The dominant energy- and number-changing processes were thought to be \nu e^- -> e^- \nu and \nu\bar \nu e^+ e^- until Suzuki (1993) showed that the bremsstrahlung process \nu\bar \nu NN NN was actually more important. We find that for energy exchange, the related ``inelastic scattering process'' \nu NN NN \nu is even more effective by about a factor of 10. A simple estimate implies that the \nu_\mu and \nu_\tau spectra emitted during the Kelvin-Helmholtz cooling phase are much closer to that of \nu\bar_e than had been thought previously. To facilitate a numerical study of the spectra formation we derive a scattering kernel which governs both bremsstrahlung and inelastic scattering and give an analytic approximation formula. We consider only neutron-neutron interactions, we use a one-pion exchange potential in Born approximation, nonrelativistic neutrons, and the long-wavelength limit, simplifications which appear justified for the surface layers of a SN core. We include the pion mass in the potential and we allow for an arbitrary degree of neutron degeneracy. Our treatment does not include the neutron-proton process and does not include nucleon-nucleon correlations. Our perturbative approach applies only to the SN surface layers, i.e. to densities below about 10^{14} g cm^{-3}.Comment: 36 pages, LaTeX, 6 postscript figs included, matches version accepted for publication in Astrophysical Journa

    Ab initio Translationally Invariant Nonlocal One-body Densities from No-core Shell-model Theory

    Get PDF
    [Background:] It is well known that effective nuclear interactions are in general nonlocal. Thus if nuclear densities obtained from {\it ab initio} no-core-shell-model (NCSM) calculations are to be used in reaction calculations, translationally invariant nonlocal densities must be available. [Purpose:] Though it is standard to extract translationally invariant one-body local densities from NCSM calculations to calculate local nuclear observables like radii and transition amplitudes, the corresponding nonlocal one-body densities have not been considered so far. A major reason for this is that the procedure for removing the center-of-mass component from NCSM wavefunctions up to now has only been developed for local densities. [Results:] A formulation for removing center-of-mass contributions from nonlocal one-body densities obtained from NCSM and symmetry-adapted NCSM (SA-NCSM) calculations is derived, and applied to the ground state densities of 4^4He, 6^6Li, 12^{12}C, and 16^{16}O. The nonlocality is studied as a function of angular momentum components in momentum as well as coordinate space [Conclusions:] We find that the nonlocality for the ground state densities of the nuclei under consideration increases as a function of the angular momentum. The relative magnitude of those contributions decreases with increasing angular momentum. In general, the nonlocal structure of the one-body density matrices we studied is given by the shell structure of the nucleus, and can not be described with simple functional forms.Comment: 13 pages, 11 Figure
    corecore