42 research outputs found
Sistemas ILPF e transferência de tecnologia nos estados do Rio Grande do Sul e Santa Catarina.
Os estados do Rio Grande do Sul (RS) e Sana Catarina (SC) são beneficiados pelas condições climáticas ao longo do ano, com regime de chuva e temperaturas adequadas que permitem produzir tanto culturas de inverno como de verão no mesmo ano agrícola
ASTRI SST-2M: the design evolution from the prototype to the array telescope
The Cherenkov Telescope Array (CTA) observatory will represent the new frontier of imaging atmospheric Cherenkov Telescope. The simultaneous use of large, medium and small telescopes (respectively LST, MST and SST) will allow to explore the astronomy related to the very high energy domain, typical of Gamma rays, with a sensitivity, angular resolution and image quality never seen before. Within this project, ASTRI, the Italian 2 mirrors Schwarzshild-Couder configuration Small SST led by Italian National Institute of Astronomy (INAF), has moved quickly developing a 4m class telescope prototype which has been tested with results which demonstrates excellent performance as well as wide margins for further improvements. On the basis of the experiences made on the prototype, this paper focus on the design enhancements carried out for the telescope which will be part of the Cherenkov Telescope Array
Profiling of lung SARS-CoV-2 and influenza virus infection dissects virus-specific host responses and gene signatures
BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which emerged in late 2019 has spread globally, causing a pandemic of respiratory illness designated coronavirus disease 2019 (COVID-19). A better definition of the pulmonary host response to SARS-CoV-2 infection is required to understand viral pathogenesis and to validate putative COVID-19 biomarkers that have been proposed in clinical studies. METHODS: Here, we use targeted transcriptomics of formalin-fixed paraffin-embedded tissue using the NanoString GeoMX platform to generate an in-depth picture of the pulmonary transcriptional landscape of COVID-19, pandemic H1N1 influenza and uninfected control patients. RESULTS: Host transcriptomics showed a significant upregulation of genes associated with inflammation, type I interferon production, coagulation and angiogenesis in the lungs of COVID-19 patients compared to non-infected controls. SARS-CoV-2 was non-uniformly distributed in lungs (emphasising the advantages of spatial transcriptomics) with the areas of high viral load associated with an increased type I interferon response. Once the dominant cell type present in the sample, within patient correlations and patient-patient variation, had been controlled for, only a very limited number of genes were differentially expressed between the lungs of fatal influenza and COVID-19 patients. Strikingly, the interferon-associated gene IFI27, previously identified as a useful blood biomarker to differentiate bacterial and viral lung infections, was significantly upregulated in the lungs of COVID-19 patients compared to patients with influenza. CONCLUSION: Collectively, these data demonstrate that spatial transcriptomics is a powerful tool to identify novel gene signatures within tissues, offering new insights into the pathogenesis of SARS-COV-2 to aid in patient triage and treatment.Arutha Kulasinghe, Chin Wee Tan, Anna Flavia Ribeiro dos Santos Miggiolaro, James Monkman, Habib SadeghiRad, Dharmesh D. Bhuva, Jarbas da Silva Motta Junior, Caroline Busatta Vaz de Paula, Seigo Nagashima, Cristina Pellegrino Baena, Paulo Souza-Fonseca-Guimaraes, Lucia de Noronha, Timothy McCulloch, Gustavo Rodrigues Rossi, Caroline Cooper, Benjamin Tang, Kirsty R. Short, Melissa J. Davis, Fernando Souza-Fonseca-Guimaraes, Gabrielle T. Belz, and Ken O, Byrn
Aiuto medico a morire e diritto: per la costruzione di un dibattito pubblico plurale e consapevole - Documento di sintesi del gruppo di lavoro in materia di aiuto medico al morire.
Oregano essential oil as food additive for piglets: antimicrobial and antioxidant potential
The Human Affectome
Over the last decades, the interdisciplinary field of the affective sciences has seen proliferation rather than integration of theoretical perspectives. This is due to differences in metaphysical and mechanistic assumptions about human affective phenomena (what they are and how they work) which, shaped by academic motivations and values, have determined the affective constructs and operationalizations. An assumption on the purpose of affective phenomena can be used as a teleological principle to guide the construction of a common set of metaphysical and mechanistic assumptions—a framework for human affective research. In this capstone paper for the special issue “Towards an Integrated Understanding of the Human Affectome”, we gather the tiered purpose of human affective phenomena to synthesize assumptions that account for human affective phenomena collectively. This teleologically-grounded framework offers a principled agenda and launchpad for both organizing existing perspectives and generating new ones. Ultimately, we hope Human Affectome brings us a step closer to not only an integrated understanding of human affective phenomena, but an integrated field for affective research
The PLATO mission
PLATO (PLAnetary Transits and Oscillations of stars) is ESA’s M3 mission designed to detect and characterise extrasolar planets and perform asteroseismic monitoring of a large number of stars. PLATO will detect small planets (down to <2R
) around bright stars (<11 mag), including terrestrial planets in the habitable zone of solar-like stars. With the complement of radial velocity observations from the ground, planets will be characterised for their radius, mass, and age with high accuracy (5%, 10%, 10% for an Earth-Sun combination respectively). PLATO will provide us with a large-scale catalogue of well-characterised small planets up to intermediate orbital periods, relevant for a meaningful comparison to planet formation theories and to better understand planet evolution. It will make possible comparative exoplanetology to place our Solar System planets in a broader context. In parallel, PLATO will study (host) stars using asteroseismology, allowing us to determine the stellar properties with high accuracy, substantially enhancing our knowledge of stellar structure and evolution. The payload instrument consists of 26 cameras with 12cm aperture each. For at least four years, the mission will perform high-precision photometric measurements. Here we review the science objectives, present PLATO‘s target samples and fields, provide an overview of expected core science performance as well as a description of the instrument and the mission profile towards the end of the serial production of the flight cameras. PLATO is scheduled for a launch date end 2026. This overview therefore provides a summary of the mission to the community in preparation of the upcoming operational phases
