105 research outputs found
Wall Adhesion and Constitutive Modelling of Strong Colloidal Gels
Wall adhesion effects during batch sedimentation of strongly flocculated
colloidal gels are commonly assumed to be negligible. In this study in-situ
measurements of colloidal gel rheology and solids volume fraction distribution
suggest the contrary, where significant wall adhesion effects are observed in a
110mm diameter settling column. We develop and validate a mathematical model
for the equilibrium stress state in the presence of wall adhesion under both
viscoplastic and viscoelastic constitutive models. These formulations highlight
fundamental issues regarding the constitutive modeling of colloidal gels,
specifically the relative utility and validity of viscoplastic and viscoelastic
rheological models under arbitrary tensorial loadings. The developed model is
validated against experimental data, which points toward a novel method to
estimate the shear and compressive yield strength of strongly flocculated
colloidal gels from a series of equilibrium solids volume fraction profiles
over various column widths.Comment: 37 pages, 12 figures, submitted to Journal of Rheolog
The non-monotonic shear-thinning flow of two strongly cohesive concentrated suspensions
The behaviour in simple shear of two concentrated and strongly cohesive
mineral suspensions showing highly non-monotonic flow curves is described. Two
rheometric test modes were employed, controlled stress and controlled
shear-rate. In controlled stress mode the materials showed runaway flow above a
yield stress, which, for one of the suspensions, varied substantially in value
and seemingly at random from one run to the next, such that the up flow-curve
appeared to be quite irreproducible. The down-curve was not though, as neither
was the curve obtained in controlled rate mode, which turned out to be
triple-valued in the region where runaway flow was seen in controlled rising
stress. For this first suspension, the total stress could be decomposed into
three parts to a good approximation: a viscous component proportional to a
plastic viscosity, a constant isostatic contribution, and a third shear-rate
dependent contribution associated with the particulate network which decreased
with increasing shear-rate raised to the -7/10th power. In the case of the
second suspension, the stress could be decomposed along similar lines, although
the strain-rate softening of the solid-phase stress was found to be logarithmic
and the irreducible isostatic stress was small. The flow curves are discussed
in the light of recent simulations and they conform to a very simple but
general rule for non-monotonic behaviour in cohesive suspensions and emulsions,
namely that it is caused by strain-rate softening of the solid phase stress.Comment: Revised and corrected version accepted by J. non-Newtonian Fluid
Mech., this version 24 pages, 9 Figs inc. graphical abstrac
Restructuring of colloidal aggregates in shear flow: Coupling interparticle contact models with Stokesian dynamics
A method to couple interparticle contact models with Stokesian dynamics (SD)
is introduced to simulate colloidal aggregates under flow conditions. The
contact model mimics both the elastic and plastic behavior of the cohesive
connections between particles within clusters. Owing to this, clusters can
maintain their structures under low stress while restructuring or even breakage
may occur under sufficiently high stress conditions. SD is an efficient method
to deal with the long-ranged and many-body nature of hydrodynamic interactions
for low Reynolds number flows. By using such a coupled model, the restructuring
of colloidal aggregates under stepwise increasing shear flows was studied.
Irreversible compaction occurs due to the increase of hydrodynamic stress on
clusters. Results show that the greater part of the fractal clusters are
compacted to rod-shaped packed structures, while the others show isotropic
compaction.Comment: A simulation movie be found at
http://www-levich.engr.ccny.cuny.edu/~seto/sites/colloidal_aggregates_shearflow.htm
Quantitative imaging of concentrated suspensions under flow
We review recent advances in imaging the flow of concentrated suspensions,
focussing on the use of confocal microscopy to obtain time-resolved information
on the single-particle level in these systems. After motivating the need for
quantitative (confocal) imaging in suspension rheology, we briefly describe the
particles, sample environments, microscopy tools and analysis algorithms needed
to perform this kind of experiments. The second part of the review focusses on
microscopic aspects of the flow of concentrated model hard-sphere-like
suspensions, and the relation to non-linear rheological phenomena such as
yielding, shear localization, wall slip and shear-induced ordering. Both
Brownian and non-Brownian systems will be described. We show how quantitative
imaging can improve our understanding of the connection between microscopic
dynamics and bulk flow.Comment: Review on imaging hard-sphere suspensions, incl summary of
methodology. Submitted for special volume 'High Solid Dispersions' ed. M.
Cloitre, Vol. xx of 'Advances and Polymer Science' (Springer, Berlin, 2009);
22 pages, 16 fig
Yielding and Flow in Aggregated Particulate Suspensions
The flow and consolidation of strongly flocculated particulate suspensions in water are common to a range of processing scenarios in the minerals, food, water and wastewater industries. Understanding the compressive strength or resistance to consolidation of these suspensions is relevant to processes such as filtration, centrifugation and gravity settling, where the compressive strength defines an upper boundary for processing. New data for the compressive strength of consolidating flocculated particulate suspensions in water, including alumina and calcium carbonate, are compared with earlier data from the literature and from our own laboratories for several systems, including two earlier sets of data for alumina. The three sets of data for the compressive strength of alumina agree well. Differences are noted for data measured in shear between our own laboratories and others. New data for the shear strength of AKP-30 alumina are also presented, and although the agreement is not as good, the difference is implied to be due to wall slip associated with a difference in measurement techniques. A simple nonlinear poro-elastic model of the compressive strength was applied to the eight sets of compressive strength data and was found to account for most features of the observed behaviour. The agreement strongly supports the mechanistic failure mode in compression for these systems to be one of simple strain hardening. The one feature that it does not account for without invoking a ‘ratchet’ is the irreversibility of consolidation. It is, however, suspected that wall adhesion might provide such a ratchet in reality, since wall adhesion has been neglected in the analysis of raw compressive strength until recently, notwithstanding the pioneering work of Michaels and Bolger (30). Overall, the data analysis and fitting presented herein indicate a new future for the characterisation of aggregated particulate suspensions in shear and compression whereby a limited data set in both compression and shear, albeit targeted across a wide concentration range, can now be used to predict comprehensive curves for the shear yield stress and compressive yield stress of samples using a simple poro-elastic model. The veracity of the approach is indicated through a knowledge that the behaviour of both parameters is scalar across a wide range of materials and across a wide range of states of aggregation.</p
Effect of solid loading and aggregate size on the rheological behavior of PDMS/Calcium Carbonate suspensions
Correction of wall adhesion effects in batch settling of strong colloidal gels
The batch settling test is widely used to estimate the compressive rheology of strongly flocculated colloidal suspensions, in particular the compressive yield strength and hydraulic permeability. Recently it has been discovered that wall adhesion effects in these tests may be significantly greater than previously appreciated, which can introduce unbounded errors in the estimation of these rheological functions. Whilst a methodology to solve the underlying static problem and correct for wall adhesion effects has been developed, this method is quite complex and unwieldy, involving solution of a 2D hyper-elastic constitutive model for strong colloidal gels. In this paper we develop a highly simplified 1D visco-plastic approximation to the hyper-elastic model which admits analytic expressions for the equilibrium solids concentration profile and bed height. These expressions facilitate robust estimation of the compressive yield and wall adhesion strength via nonlinear regression of experimental data in the presence of small measurement errors
Selenium Responsive Conditions and the Concentrations of Selenium in Skeletal Muscle in Young Sheep
- …
