2,666 research outputs found

    Stochasticity and Non-locality of Time

    Get PDF
    We present simple classical dynamical models to illustrate the idea of introducing a stochasticity with non-locality into the time variable. For stochasticity in time, these models include noise in the time variable but not in the "space" variable, which is opposite to the normal description of stochastic dynamics. Similarly with respect to non-locality, we discuss delayed and predictive dynamics which involve two points separated on the time axis. With certain combinations of fluctuations and non-locality in time, we observe a ``resonance'' effect. This is an effect similar to stochastic resonance, which has been discussed within the normal context of stochastic dynamics, but with different mechanisms. We discuss how these models may be developed to fit a broader context of generalized dynamical systems where fluctuations and non-locality are present in both space and time.Comment: 12 pages, 5 figures, Accepted and to appear in Physica A. (reference corrected for ver. 2

    Sealing of chromosomal DNA nicks during nucleotide excision repair requires XRCC1 and DNA ligase III alpha in a cell-cycle-specific manner

    Get PDF
    Impaired gap filling and sealing of chromosomal DNA in nucleotide excision repair (NER) leads to genome instability. XRCC1-DNA ligase IIIa (XRCC1-Lig3) plays a central role in the repair of DNA single-strand breaks but has never been implicated in NER. Here we show that XRCC1-Lig3 is indispensable for ligation of NER-induced breaks and repair of UV lesions in quiescent cells. Furthermore, our results demonstrate that two distinct complexes differentially carry out gap filling in NER. XRCC1-Lig3 and DNA polymerase d colocalize and interact with NER components in a UV- and incision-dependent manner throughout the cell cycle. In contrast, DNA ligase I and DNA polymerase are recruited to UV-damage sites only in proliferating cells. This study reveals an unexpected and key role for XRCC1-Lig3 in maintenance of genomic integrity by NER in both dividing and nondividing cells and provides evidence for cell-cycle regulation of NER-mediated repair synthesis in vivo

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    Dark solitons in atomic Bose-Einstein condensates: from theory to experiments

    Full text link
    This review paper presents an overview of the theoretical and experimental progress on the study of matter-wave dark solitons in atomic Bose-Einstein condensates. Upon introducing the general framework, we discuss the statics and dynamics of single and multiple matter-wave dark solitons in the quasi one-dimensional setting, in higher-dimensional settings, as well as in the dimensionality crossover regime. Special attention is paid to the connection between theoretical results, obtained by various analytical approaches, and relevant experimental observations.Comment: 82 pages, 13 figures. To appear in J. Phys. A: Math. Theor

    A comprehensive analysis of genetic risk for metabolic syndrome in the Egyptian population via allele frequency investigation and Missense3D predictions

    Get PDF
    Abstract Diabetes mellitus (DM) represents a major health problem in Egypt and worldwide, with increasing numbers of patients with prediabetes every year. Numerous factors, such as obesity, hyperlipidemia, and hypertension, which have recently become serious concerns, affect the complex pathophysiology of diabetes. These metabolic syndrome diseases are highly linked to genetic variability that drives certain populations, such as Egypt, to be more susceptible to developing DM. Here we conduct a comprehensive analysis to pinpoint the similarities and uniqueness among the Egyptian genome reference and the 1000-genome subpopulations (Europeans, Ad-Mixed Americans, South Asians, East Asians, and Africans), aiming at defining the potential genetic risk of metabolic syndromes. Selected approaches incorporated the analysis of the allele frequency of the different populations’ variations, supported by genotypes’ principal component analysis. Results show that the Egyptian’s reference metabolic genes were clustered together with the Europeans’, Ad-Mixed Americans’, and South-Asians’. Additionally, 8563 variants were uniquely identified in the Egyptian cohort, from those, two were predicted to cause structural damage, namely, CDKAL1: 6_21065070 (A > T) and PPARG: 3_12351660 (C > T) utilizing the Missense3D database. The former is a protein coding gene associated with Type 2 DM while the latter is a key regulator of adipocyte differentiation and glucose homeostasis. Both variants were detected heterozygous in two different Egyptian individuals from overall 110 sample. This analysis sheds light on the unique genetic traits of the Egyptian population that play a role in the DM high prevalence in Egypt. The proposed analysis pipeline -available through GitHub- could be used to conduct similar analysis for other diseases across populations
    corecore