1,036 research outputs found

    Accelerated in vivo proliferation of memory phenotype CD4+ T-cells in human HIV-1 infection irrespective of viral chemokine co-receptor tropism.

    Get PDF
    CD4(+) T-cell loss is the hallmark of HIV-1 infection. CD4 counts fall more rapidly in advanced disease when CCR5-tropic viral strains tend to be replaced by X4-tropic viruses. We hypothesized: (i) that the early dominance of CCR5-tropic viruses results from faster turnover rates of CCR5(+) cells, and (ii) that X4-tropic strains exert greater pathogenicity by preferentially increasing turnover rates within the CXCR4(+) compartment. To test these hypotheses we measured in vivo turnover rates of CD4(+) T-cell subpopulations sorted by chemokine receptor expression, using in vivo deuterium-glucose labeling. Deuterium enrichment was modeled to derive in vivo proliferation (p) and disappearance (d*) rates which were related to viral tropism data. 13 healthy controls and 13 treatment-naive HIV-1-infected subjects (CD4 143-569 cells/ul) participated. CCR5-expression defined a CD4(+) subpopulation of predominantly CD45R0(+) memory cells with accelerated in vivo proliferation (p = 2.50 vs 1.60%/d, CCR5(+) vs CCR5(-); healthy controls; P<0.01). Conversely, CXCR4 expression defined CD4(+) T-cells (predominantly CD45RA(+) naive cells) with low turnover rates. The dominant effect of HIV infection was accelerated turnover of CCR5(+)CD45R0(+)CD4(+) memory T-cells (p = 5.16 vs 2.50%/d, HIV vs controls; P<0.05), naïve cells being relatively unaffected. Similar patterns were observed whether the dominant circulating HIV-1 strain was R5-tropic (n = 9) or X4-tropic (n = 4). Although numbers were small, X4-tropic viruses did not appear to specifically drive turnover of CXCR4-expressing cells (p = 0.54 vs 0.72 vs 0.44%/d in control, R5-tropic, and X4-tropic groups respectively). Our data are most consistent with models in which CD4(+) T-cell loss is primarily driven by non-specific immune activation

    CHD pile performance, Part I:Physical modelling

    Get PDF
    The Continuous Helical Displacement (CHD) pile is an auger displacement pile developed by Roger Bullivant Ltd in the UK. It has performance characteristics of both displacement and non-displacement piles due to the nature in which it is installed. Based on field experience, it has been shown that the load-settlement performance of the CHD installed in sand exceeds the current design predictions based upon conservative effective pile diameter and design parameters associated with auger bored or continuous flight auger (CFA) cast in-situ piles. In an effort to gain a greater understanding of the performance of the CHD pile compared with more conventional piling techniques, a programme of model pile testing and associated Finite Element Modelling (the subject of a Companion Paper) in sand was undertaken. The model testing programme established that greater shaft resistance may be developed for CHD piles than had originally been considered. Based upon the results of the model testing, recommendations for more appropriate approaches to the selection of end bearing and shaft resistance factors are made to predict ultimate load capacity in sand

    Effect of Hydrogen Peroxide on Immersion Challenge of Rainbow Trout Fry with Flavobacterium psychrophilum

    Get PDF
    An experimental model for immersion challenge of rainbow trout fry (Oncorhynchus mykiss) with Flavobacterium psychrophilum, the causative agent of rainbow trout fry syndrome and bacterial cold water disease was established in the present study. Although injection-based infection models are reliable and produce high levels of mortality attempts to establish a reproducible immersion model have been less successful. Various concentrations of hydrogen peroxide (H₂O₂) were evaluated before being used as a pre-treatment stressor prior to immersion exposure to F. psychrophilum. H₂O₂ accelerated the onset of mortality and increased mortality approximately two-fold; from 9.1% to 19.2% and from 14.7% to 30.3% in two separate experiments. Clinical signs observed in the infected fish corresponded to symptoms characteristically seen during natural outbreaks. These findings indicate that pre-treatment with H₂O₂ can increase the level of mortality in rainbow trout fry after exposure to F. psychrophilum

    Identification of Class I HLA T Cell Control Epitopes for West Nile Virus

    Get PDF
    The recent West Nile virus (WNV) outbreak in the United States underscores the importance of understanding human immune responses to this pathogen. Via the presentation of viral peptide ligands at the cell surface, class I HLA mediate the T cell recognition and killing of WNV infected cells. At this time, there are two key unknowns in regards to understanding protective T cell immunity: 1) the number of viral ligands presented by the HLA of infected cells, and 2) the distribution of T cell responses to these available HLA/viral complexes. Here, comparative mass spectroscopy was applied to determine the number of WNV peptides presented by the HLA-A*11:01 of infected cells after which T cell responses to these HLA/WNV complexes were assessed. Six viral peptides derived from capsid, NS3, NS4b, and NS5 were presented. When T cells from infected individuals were tested for reactivity to these six viral ligands, polyfunctional T cells were focused on the GTL9 WNV capsid peptide, ligands from NS3, NS4b, and NS5 were less immunogenic, and two ligands were largely inert, demonstrating that class I HLA reduce the WNV polyprotein to a handful of immune targets and that polyfunctional T cells recognize infections by zeroing in on particular HLA/WNV epitopes. Such dominant HLA/peptide epitopes are poised to drive the development of WNV vaccines that elicit protective T cells as well as providing key antigens for immunoassays that establish correlates of viral immunity. © 2013 Kaabinejadian et al

    The home environment and childhood obesity in low-income households: indirect effects via sleep duration and screen time

    Get PDF
    Background Childhood obesity disproportionally affects children from low-income households. With the aim of informing interventions, this study examined pathways through which the physical and social home environment may promote childhood overweight/obesity in low-income households. Methods Data on health behaviors and the home environment were collected at home visits in low-income, urban households with either only normal weight (n = 48) or predominantly overweight/obese (n = 55) children aged 6–13 years. Research staff conducted comprehensive, in-person audits of the foods, media, and sports equipment in each household. Anthropometric measurements were collected, and children’s physical activity was assessed through accelerometry. Caregivers and children jointly reported on child sleep duration, screen time, and dietary intake of foods previously implicated in childhood obesity risk. Path analysis was used to test direct and indirect associations between the home environment and child weight status via the health behaviors assessed. Results Sleep duration was the only health behavior associated with child weight status (OR = 0.45, 95% CI: 0.27, 0.77), with normal weight children sleeping 33.3 minutes/day longer on average than overweight/obese children. The best-fitting path model explained 26% of variance in child weight status, and included paths linking chaos in the home environment, lower caregiver screen time monitoring, inconsistent implementation of bedtime routines, and the presence of a television in children’s bedrooms to childhood overweight/obesity through effects on screen time and sleep duration. Conclusions This study adds to the existing literature by identifying aspects of the home environment that influence childhood weight status via indirect effects on screen time and sleep duration in children from low-income households. Pediatric weight management interventions for low-income households may be improved by targeting aspects of the physical and social home environment associated with sleep

    Cerebrospinal fluid biomarker candidates associated with human WNV neuroinvasive disease

    Get PDF
    During the last decade, the epidemiology of WNV in humans has changed in the southern regions of Europe, with high incidence of West Nile fever (WNF) cases, but also of West Nile neuroinvasive disease (WNND). The lack of human vaccine or specific treatment against WNV infection imparts a pressing need to characterize indicators associated with neurological involvement. By its intimacy with central nervous system (CNS) structures, modifications in the cerebrospinal fluid (CSF) composition could accurately reflect CNS pathological process. Until now, few studies investigated the association between imbalance of CSF elements and severity of WNV infection. The aim of the present study was to apply the iTRAQ technology in order to identify the CSF proteins whose abundances are modified in patients with WNND. Forty-seven proteins were found modified in the CSF of WNND patients as compared to control groups, and most of them are reported for the first time in the context of WNND. On the basis of their known biological functions, several of these proteins were associated with inflammatory response. Among them, Defensin-1 alpha (DEFA1), a protein reported with anti-viral effects, presente
    corecore