1,680 research outputs found
Non-disturbing quantum measurements
We consider pairs of quantum observables (POVMs) and analyze the relation
between the notions of non-disturbance, joint measurability and commutativity.
We specify conditions under which these properties coincide or
differ---depending for instance on the interplay between the number of outcomes
and the Hilbert space dimension or on algebraic properties of the effect
operators. We also show that (non-)disturbance is in general not a symmetric
relation and that it can be decided and quantified by means of a semidefinite
program.Comment: Minor corrections in v
Green's Function Formalism for Waveguide QED Applications
We present a quantum-field-theoretical framework based on path integrals and
Feynman diagrams for the investigation of the quantum-optical properties of
one-dimensional waveguiding structures with embedded quantum impurities. In
particular, we obtain the Green's functions for a waveguide with an embedded
two-level system in the single- and two-excitation sector for arbitrary
dispersion relations. In the single excitation sector, we show how to sum the
diagrammatic perturbation series to all orders and thus obtain explicit
expressions for physical quantities such as the spectral density and the
scattering matrix. In the two-excitation sector, we show that strictly linear
dispersion relations exhibit the special property that the corresponding
diagrammatic perturbation series terminates after two terms, again allowing for
closed-form expressions for physical quantities. In the case of general
dispersion relations, notably those exhibiting a band edge or waveguide cut-off
frequencies, the perturbation series cannot be summed explicitly. Instead, we
derive a self-consistent T-matrix equation that reduces the computational
effort to that of a single-excitation computation. This analysis allows us to
identify a Fano resonance between the occupied quantum impurity and a free
photon in the waveguide as a unique signature of the few-photon nonlinearity
inherent in such systems. In addition, our diagrammatic approach allows for the
classification of different physical processes such as the creation of
photon-photon correlations and interaction-induced radiation trapping - the
latter being absent for strictly linear dispersion relations. Our framework can
serve as the basis for further studies that involve more complex scenarios such
as several and many-level quantum impurities, networks of coupled waveguides,
disordered systems, and non-equilibrium effects.Comment: 19 pages, 6 figure
Capabilities of Earth-based radar facilities for near-Earth asteroid observations
We evaluated the planetary radar capabilities at Arecibo, the Goldstone 70-m
DSS-14 and 34-m DSS-13 antennas, the 70-m DSS-43 antenna at Canberra, the Green
Bank Telescope, and the Parkes Radio Telescope in terms of their relative
sensitivities and the number of known near-Earth asteroids (NEAs) detectable
per year in monostatic and bistatic configurations. In the 2015 calendar year,
monostatic observations with Arecibo and DSS-14 were capable of detecting 253
and 131 NEAs respectively, with signal-to-noise ratios (SNRs) greater than
30/track. Combined, the two observatories were capable of detecting 276 NEAs.
Of these, Arecibo detected 77 and Goldstone detected 32, or 30% and 24% the
numbers that were possible. The two observatories detected an additional 18 and
7 NEAs respectively, with SNRs of less than 30/track. This indicates that a
substantial number of potential targets are not being observed. The bistatic
configuration with DSS-14 transmitting and the Green Bank Telescope receiving
was capable of detecting about 195 NEAs, or ~50% more than with monostatic
observations at DSS-14. Most of the detectable asteroids were targets of
opportunity that were discovered less than 15 days before the end of their
observing windows. About 50% of the detectable asteroids have absolute
magnitudes > 25, which corresponds diameters < ~30 m.Comment: 12 pages, 7 figures, Accepted to A
Aerodynamic Simulation of Runback Ice Accretion
This report presents the results of recent investigations into the aerodynamics of simulated runback ice accretion on airfoils. Aerodynamic tests were performed on a full-scale model using a high-fidelity, ice-casting simulation at near-flight Reynolds (Re) number. The ice-casting simulation was attached to the leading edge of a 72-in. (1828.8-mm ) chord NACA 23012 airfoil model. Aerodynamic performance tests were conducted at the ONERA F1 pressurized wind tunnel over a Reynolds number range of 4.7?10(exp 6) to 16.0?10(exp 6) and a Mach (M) number ran ge of 0.10 to 0.28. For Re = 16.0?10(exp 6) and M = 0.20, the simulated runback ice accretion on the airfoil decreased the maximum lift coe fficient from 1.82 to 1.51 and decreased the stalling angle of attack from 18.1deg to 15.0deg. The pitching-moment slope was also increased and the drag coefficient was increased by more than a factor of two. In general, the performance effects were insensitive to Reynolds numb er and Mach number changes over the range tested. Follow-on, subscale aerodynamic tests were conducted on a quarter-scale NACA 23012 model (18-in. (457.2-mm) chord) at Re = 1.8?10(exp 6) and M = 0.18, using low-fidelity, geometrically scaled simulations of the full-scale castin g. It was found that simple, two-dimensional simulations of the upper- and lower-surface runback ridges provided the best representation of the full-scale, high Reynolds number iced-airfoil aerodynamics, whereas higher-fidelity simulations resulted in larger performance degrada tions. The experimental results were used to define a new subclassification of spanwise ridge ice that distinguishes between short and tall ridges. This subclassification is based upon the flow field and resulting aerodynamic characteristics, regardless of the physical size of the ridge and the ice-accretion mechanism
Risk factors for COPD exacerbations in inhaled medication users: the COPDGene study biannual longitudinal follow-up prospective cohort.
BackgroundDespite inhaled medications that decrease exacerbation risk, some COPD patients experience frequent exacerbations. We determined prospective risk factors for exacerbations among subjects in the COPDGene Study taking inhaled medications.Methods2113 COPD subjects were categorized into four medication use patterns: triple therapy with tiotropium (TIO) plus long-acting beta-agonist/inhaled-corticosteroid (ICS ± LABA), tiotropium alone, ICS ± LABA, and short-acting bronchodilators. Self-reported exacerbations were recorded in telephone and web-based longitudinal follow-up surveys. Associations with exacerbations were determined within each medication group using four separate logistic regression models. A head-to-head analysis compared exacerbation risk among subjects using tiotropium vs. ICS ± LABA.ResultsIn separate logistic regression models, the presence of gastroesophageal reflux, female gender, and higher scores on the St. George's Respiratory Questionnaire were significant predictors of exacerbator status within multiple medication groups (reflux: OR 1.62-2.75; female gender: OR 1.53 - OR 1.90; SGRQ: OR 1.02-1.03). Subjects taking either ICS ± LABA or tiotropium had similar baseline characteristics, allowing comparison between these two groups. In the head-to-head comparison, tiotropium users showed a trend towards lower rates of exacerbations (OR = 0.69 [95 % CI 0.45, 1.06], p = 0.09) compared with ICS ± LABA users, especially in subjects without comorbid asthma (OR = 0.56 [95% CI 0.31, 1.00], p = 0.05).ConclusionsEach common COPD medication usage group showed unique risk factor patterns associated with increased risk of exacerbations, which may help clinicians identify subjects at risk. Compared to similar subjects using ICS ± LABA, those taking tiotropium showed a trend towards reduced exacerbation risk, especially in subjects without asthma.Trial registrationClinicalTrials.gov NCT00608764, first received 1/28/2008
Recommended from our members
Effector memory differentiation increases detection of replication-competent HIV-l in resting CD4+ T cells from virally suppressed individuals.
Studies have demonstrated that intensive ART alone is not capable of eradicating HIV-1, as the virus rebounds within a few weeks upon treatment interruption. Viral rebound may be induced from several cellular subsets; however, the majority of proviral DNA has been found in antigen experienced resting CD4+ T cells. To achieve a cure for HIV-1, eradication strategies depend upon both understanding mechanisms that drive HIV-1 persistence as well as sensitive assays to measure the frequency of infected cells after therapeutic interventions. Assays such as the quantitative viral outgrowth assay (QVOA) measure HIV-1 persistence during ART by ex vivo activation of resting CD4+ T cells to induce latency reversal; however, recent studies have shown that only a fraction of replication-competent viruses are inducible by primary mitogen stimulation. Previous studies have shown a correlation between the acquisition of effector memory phenotype and HIV-1 latency reversal in quiescent CD4+ T cell subsets that harbor the reservoir. Here, we apply our mechanistic understanding that differentiation into effector memory CD4+ T cells more effectively promotes HIV-1 latency reversal to significantly improve proviral measurements in the QVOA, termed differentiation QVOA (dQVOA), which reveals a significantly higher frequency of the inducible HIV-1 replication-competent reservoir in resting CD4+ T cells
Aerodynamic Simulation of Ice Accretion on Airfoils
This report describes recent improvements in aerodynamic scaling and simulation of ice accretion on airfoils. Ice accretions were classified into four types on the basis of aerodynamic effects: roughness, horn, streamwise, and spanwise ridge. The NASA Icing Research Tunnel (IRT) was used to generate ice accretions within these four types using both subscale and full-scale models. Large-scale, pressurized windtunnel testing was performed using a 72-in.- (1.83-m-) chord, NACA 23012 airfoil model with high-fidelity, three-dimensional castings of the IRT ice accretions. Performance data were recorded over Reynolds numbers from 4.5 x 10(exp 6) to 15.9 x 10(exp 6) and Mach numbers from 0.10 to 0.28. Lower fidelity ice-accretion simulation methods were developed and tested on an 18-in.- (0.46-m-) chord NACA 23012 airfoil model in a small-scale wind tunnel at a lower Reynolds number. The aerodynamic accuracy of the lower fidelity, subscale ice simulations was validated against the full-scale results for a factor of 4 reduction in model scale and a factor of 8 reduction in Reynolds number. This research has defined the level of geometric fidelity required for artificial ice shapes to yield aerodynamic performance results to within a known level of uncertainty and has culminated in a proposed methodology for subscale iced-airfoil aerodynamic simulation
First Extragalactic Detection of Thermal Hydroxyl (OH) 18cm Emission in M31 Reveals Abundant CO-faint Molecular Gas
The most abundant interstellar molecule, molecular Hydrogen (H), is
practically invisible in cold molecular clouds. Astronomers typically use
carbon monoxide (CO) to trace the bulk distribution and mass of H in our
galaxy and many others. CO observations alone fail to trace a massive component
of molecular gas known as "CO-dark" gas. We present an ultra sensitive pilot
search for the 18cm hydroxyl (OH) lines in the Andromeda Galaxy (M31) with the
100m Robert C. Byrd Green Bank Telescope. We successfully detected the 1667 and
1665 MHz OH in faint emission. The 1665/1667 MHz line ratio is consistent with
the characteristic 5:9 ratio associated with local thermodynamic equilibrium
(LTE). To our knowledge, this is the first detection of non-maser 18cm OH
emission in another galaxy. We compare our OH and HI observations with archival
CO (1-0) observations. Our OH detection position overlaps with the previously
discovered Arp Outer Arm in CO. Our best estimates show that the amount of
H traced by OH is 140% higher than the amount traced by CO in this
sightline. We show that the amount of dark molecular gas implied by dust data
supports this conclusion. We conclude that the 18cm OH lines hold promise as a
valuable tool for mapping of the "CO-dark" and "CO-faint" molecular gas phase
in nearby galaxies, especially with upcoming multi-beam, phased-array feed
receivers on radio telescopes which will allow for drastically improved mapping
speeds of faint signals.Comment: 15 pages, 6 figures, Submitted to ApJ, comments welcome
Increased frequency of Tim-3 expressing T cells is associated with symptomatic West Nile virus infection
More than a decade after West Nile virus (WNV) entered North America, and despite a significant increase in reported cases during the 2012 and 2013 seasons, no treatment or vaccine for humans is available. Although antiviral T cells contribute to the control of WNV, little is known about their regulation during acute infection. We analyzed the expression of Tim-3 and PD-1, two recently identified T cell negative immune checkpoint receptors, over the course of WNV infection. Symptomatic WNV+ donors exhibited higher frequencies of Tim-3+ cells than asymptomatic subjects within naïve/early differentiated CD28+/-CD57-CD4+ and differentiated CD28-CD57-CD8+ T cells. Our study links Tim-3-expression on T cells during acute WNV infection with the development of symptomatic disease, suggesting Tim-3 and its ligands could be targeted therapeutically to alter anti-WNV immunity and improve disease outcome
- …
