1,070 research outputs found
Origin of the reduced exchange bias in epitaxial FeNi(111)/CoO(111) bilayer
We have employed Soft and Hard X-ray Resonant Magnetic Scattering and
Polarised Neutron Diffraction to study the magnetic interface and the bulk
antiferromagnetic domain state of the archetypal epitaxial
NiFe(111)/CoO(111) exchange biased bilayer. The combination of
these scattering tools provides unprecedented detailed insights into the still
incomplete understanding of some key manifestations of the exchange bias
effect. We show that the several orders of magnitude difference between the
expected and measured value of exchange bias field is caused by an almost
anisotropic in-plane orientation of antiferromagnetic domains. Irreversible
changes of their configuration lead to a training effect. This is directly seen
as a change in the magnetic half order Bragg peaks after magnetization
reversal. A 30 nm size of antiferromagnetic domains is extracted from the width
the (1/2 1/2 1/2) antiferromagnetic magnetic peak measured both by neutron and
x-ray scattering. A reduced blocking temperature as compared to the measured
antiferromagnetic ordering temperature clearly corresponds to the blocking of
antiferromagnetic domains. Moreover, an excellent correlation between the size
of the antiferromagnetic domains, exchange bias field and frozen-in spin ratio
is found, providing a comprehensive understanding of the origin of exchange
bias in epitaxial systems.Comment: 8 pages, 5 figures, submitte
Recalculation of Proton Compton Scattering in Perturbative QCD
At very high energy and wide angles, Compton scattering on the proton (gamma
p -> gamma p) is described by perturbative QCD. The perturbative QCD
calculation has been performed several times previously, at leading twist and
at leading order in alpha_s, with mutually inconsistent results, even when the
same light-cone distribution amplitudes have been employed. We have
recalculated the helicity amplitudes for this process, using contour
deformations to evaluate the singular integrals over the light-cone momentum
fractions. We do not obtain complete agreement with any previous result. Our
results are closest to those of the most recent previous computation, differing
significantly for just one of the three independent helicity amplitudes, and
only for backward scattering angles. We present results for the unpolarized
cross section, and for three different polarization asymmetries. We compare the
perturbative QCD predictions for these observables with those of the handbag
and diquark models. In order to reduce uncertainties associated with alpha_s
and the three-quark wave function normalization, we have normalized the Compton
cross section using the proton elastic form factor. The theoretical predictions
for this ratio are about an order of magnitude below existing experimental
data.Comment: Latex, 23 pages, 13 figures. Checked numerical integration one more
way; added results for one more proton distribution amplitude; a few other
minor changes. Version to appear in Phys. Rev.
Impact of carbon nanotube length on electron transport in aligned carbon nanotube networks
Here, we quantify the electron transport properties of aligned carbon nanotube (CNT) networks as a function of the CNT length, where the electrical conductivities may be tuned by up to 10× with anisotropies exceeding 40%. Testing at elevated temperatures demonstrates that the aligned CNT networks have a negative temperature coefficient of resistance, and application of the fluctuation induced tunneling model leads to an activation energy of ≈14 meV for electron tunneling at the CNT-CNT junctions. Since the tunneling activation energy is shown to be independent of both CNT length and orientation, the variation in electron transport is attributed to the number of CNT-CNT junctions an electron must tunnel through during its percolated path, which is proportional to the morphology of the aligned CNT network.United States. Army Research Office (contract W911NF-07-D-0004)United States. Army Research Office (contract W911NF-13-D-0001)United States. Air Force Office of Scientific Research (AFRL/RX contract FA8650-11-D-5800, Task Order 0003)National Science Foundation (U.S.) (NSF Award No. ECS-0335765)United States. Dept. of Defense (National Defense Science and Engineering Graduate Fellowship
An Efficient Molecular Dynamics Scheme for the Calculation of Dopant Profiles due to Ion Implantation
We present a highly efficient molecular dynamics scheme for calculating the
concentration depth profile of dopants in ion irradiated materials. The scheme
incorporates several methods for reducing the computational overhead, plus a
rare event algorithm that allows statistically reliable results to be obtained
over a range of several orders of magnitude in the dopant concentration.
We give examples of using this scheme for calculating concentration profiles
of dopants in crystalline silicon. Here we can predict the experimental profile
over five orders of magnitude for both channeling and non-channeling implants
at energies up to 100s of keV.
The scheme has advantages over binary collision approximation (BCA)
simulations, in that it does not rely on a large set of empirically fitted
parameters. Although our scheme has a greater computational overhead than the
BCA, it is far superior in the low ion energy regime, where the BCA scheme
becomes invalid.Comment: 17 pages, 21 figures, 2 tables. See: http://bifrost.lanl.gov/~reed
Forward pi^0 Production and Associated Transverse Energy Flow in Deep-Inelastic Scattering at HERA
Deep-inelastic positron-proton interactions at low values of Bjorken-x down
to x \approx 4.10^-5 which give rise to high transverse momentum pi^0 mesons
are studied with the H1 experiment at HERA. The inclusive cross section for
pi^0 mesons produced at small angles with respect to the proton remnant (the
forward region) is presented as a function of the transverse momentum and
energy of the pi^0 and of the four-momentum transfer Q^2 and Bjorken-x.
Measurements are also presented of the transverse energy flow in events
containing a forward pi^0 meson. Hadronic final state calculations based on QCD
models implementing different parton evolution schemes are confronted with the
data.Comment: 27 pages, 8 figures and 3 table
- …
