33 research outputs found

    Frequency-specific hippocampal-prefrontal interactions during associative learning

    Get PDF
    Much of our knowledge of the world depends on learning associations (for example, face-name), for which the hippocampus (HPC) and prefrontal cortex (PFC) are critical. HPC-PFC interactions have rarely been studied in monkeys, whose cognitive and mnemonic abilities are akin to those of humans. We found functional differences and frequency-specific interactions between HPC and PFC of monkeys learning object pair associations, an animal model of human explicit memory. PFC spiking activity reflected learning in parallel with behavioral performance, whereas HPC neurons reflected feedback about whether trial-and-error guesses were correct or incorrect. Theta-band HPC-PFC synchrony was stronger after errors, was driven primarily by PFC to HPC directional influences and decreased with learning. In contrast, alpha/beta-band synchrony was stronger after correct trials, was driven more by HPC and increased with learning. Rapid object associative learning may occur in PFC, whereas HPC may guide neocortical plasticity by signaling success or failure via oscillatory synchrony in different frequency bands.National Institute of Mental Health (U.S.) (Conte Center Grant P50-MH094263-03)National Institute of Mental Health (U.S.) (Fellowship F32-MH081507)Picower Foundatio

    Brain Potentials Highlight Stronger Implicit Food Memory for Taste than Health and Context Associations

    Get PDF
    Increasingly consumption of healthy foods is advised to improve population health. Reasons people give for choosing one food over another suggest that non-sensory features like health aspects are appreciated as of lower importance than taste. However, many food choices are made in the absence of the actual perception of a food's sensory properties, and therefore highly rely on previous experiences of similar consumptions stored in memory. In this study we assessed the differential strength of food associations implicitly stored in memory, using an associative priming paradigm. Participants (N = 30) were exposed to a forced-choice picture-categorization task, in which the food or non-food target images were primed with either non-sensory or sensory related words. We observed a smaller N400 amplitude at the parietal electrodes when categorizing food as compared to non-food images. While this effect was enhanced by the presentation of a food-related word prime during food trials, the primes had no effect in the non-food trials. More specifically, we found that sensory associations are stronger implicitly represented in memory as compared to non-sensory associations. Thus, this study highlights the neuronal mechanisms underlying previous observations that sensory associations are important features of food memory, and therefore a primary motive in food choice.</p

    College Women’s Feminist Identity: A Multidimensional Analysis with Implications for Coping with Sexism

    Get PDF
    This study examined components of women’s feminist identity and possible relations to their reported coping responses to sexism. A sample of 169 undergraduate women (M = 19.4 y, SD = 1.2) from diverse ethnic backgrounds completed surveys assessing their experiences and gender-related views. The first set of analyses revealed that women’s social gender identity, exposure to feminism, and gender-egalitarian attitudes independently contributed to feminist identification; moreover, non-stereotyping of feminists further predicted feminist self-identification. A second set of analyses tested the relative contribution of feminist identity components to women’s cognitive appraisals of coping responses to sexual harassment. Seeking social support was predicted by self-identification as a feminist (for White European American women only). Confronting was predicted by social gender identity, non-stereotyping of feminists, and public identification as a feminist. Findings highlight possible components of women’s feminist identity and their possible impact on coping responses to sexism

    Coordination of entorhinal–hippocampal ensemble activity during associative learning

    No full text
    Accumulating evidence points to cortical oscillations as a mechanism for mediating interactions among functionally specialized neurons in distributed brain circuits1, 2, 3, 4, 5, 6. A brain function that may use such interactions is declarative memory—that is, memory that can be consciously recalled, such as episodes and facts. Declarative memory is enabled by circuits in the entorhinal cortex that interface the hippocampus with the neocortex7, 8. During encoding and retrieval of declarative memories, entorhinal and hippocampal circuits are thought to interact via theta and gamma oscillations4, 6, 8, which in awake rodents predominate frequency spectra in both regions9, 10, 11, 12. In favour of this idea, theta–gamma coupling has been observed between entorhinal cortex and hippocampus under steady-state conditions in well-trained rats12; however, the relationship between interregional coupling and memory formation remains poorly understood. Here we show, by multisite recording at successive stages of associative learning, that the coherence of firing patterns in directly connected entorhinal–hippocampus circuits evolves as rats learn to use an odour cue to guide navigational behaviour, and that such coherence is invariably linked to the development of ensemble representations for unique trial outcomes in each area. Entorhinal–hippocampal coupling was observed specifically in the 20–40-hertz frequency band and specifically between the distal part of hippocampal area CA1 and the lateral part of entorhinal cortex, the subfields that receive the predominant olfactory input to the hippocampal region13. Collectively, the results identify 20–40-hertz oscillations as a mechanism for synchronizing evolving representations in dispersed neural circuits during encoding and retrieval of olfactory–spatial associative memory.acceptedVersion©2014 Macmillan Publishers Limited. All rights reserved. This is the authors’ accepted and refereed manuscript to the article

    Transitions in neural oscillations reflect prediction errors generated in audiovisual speech

    No full text
    According to the predictive coding theory, top-down predictions are conveyed by backward connections and prediction errors are propagated forward across the cortical hierarchy. Using MEG in humans, we show that violating multisensory predictions causes a fundamental and qualitative change in both the frequency and spatial distribution of cortical activity. When visual speech input correctly predicted auditory speech signals, a slow delta regime (3-4 Hz) developed in higher-order speech areas. In contrast, when auditory signals invalidated predictions inferred from vision, a low-beta (14-15 Hz) / high-gamma (60-80 Hz) coupling regime appeared locally in a multisensory area (area STS). This frequency shift in oscillatory responses scaled with the degree of audio-visual congruence and was accompanied by increased gamma activity in lower sensory regions. These findings are consistent with the notion that bottom-up prediction errors are communicated in predominantly high (gamma) frequency ranges, whereas top-down predictions are mediated by slower (beta) frequencies
    corecore