932 research outputs found
Improving Student Engagement in the Study of Professional Ethics: Concepts and an Example in Cyber Security
In spite of the acknowledged importance of professional ethics, technical students often show little enthusiasm for studying the subject. This paper considers how such engagement might be improved. Four guiding principles for promoting engagement are identified: (1) aligning teaching content with student interests; (2) taking a pragmatic rather than a philosophical approach to issue resolution; (3) addressing the full complexity of real-world case studies; and (4) covering content in a way that students find entertaining. The use of these principles is then discussed with respect to the specific experience of developing and presenting a master’s module in Ethical and Legal Issues in Cyber Security at Queens University Belfast. One significant aspect of the resulting design is that it encourages students to see ethical issues in systemic terms rather than from an individual perspective, with issues emerging from a conflict between different groups with different vested interests. Case studies are used to examine how personal and business priorities create conflicts that can lead to negative press, fines and punitive legal action. The module explores the reasons why organisations may be unaware of the risks associated with their actions and how an inappropriate response to an ethical issue can significantly aggravate a situation. The module has been delivered in three successive years since 2014 and been well received on each occasion. The paper describes the design of the module and the experience of delivering it, concluding with a discussion of the effectiveness of the approach
On Acquisition and Analysis of a Dataset Comprising of Gait, Ear and Semantic data
In outdoor scenarios such as surveillance where there is very little control over the environments, complex computer vision algorithms are often required for analysis. However constrained environments, such as walkways in airports where the surroundings and the path taken by individuals can be controlled, provide an ideal application for such systems. Figure 1.1 depicts an idealised constrained environment. The path taken by the subject is restricted to a narrow path and once inside is in a volume where lighting and other conditions are controlled to facilitate biometric analysis. The ability to control the surroundings and the flow of people greatly simplifes the computer vision task, compared to typical unconstrained environments. Even though biometric datasets with greater than one hundred people are increasingly common, there is still very little known about the inter and intra-subject variation in many biometrics. This information is essential to estimate the recognition capability and limits of automatic recognition systems. In order to accurately estimate the inter- and the intra- class variance, substantially larger datasets are required [40]. Covariates such as facial expression, headwear, footwear type, surface type and carried items are attracting increasing attention; although considering the potentially large impact on an individuals biometrics, large trials need to be conducted to establish how much variance results. This chapter is the first description of the multibiometric data acquired using the University of Southampton's Multi-Biometric Tunnel [26, 37]; a biometric portal using automatic gait, face and ear recognition for identification purposes. The tunnel provides a constrained environment and is ideal for use in high throughput security scenarios and for the collection of large datasets. We describe the current state of data acquisition of face, gait, ear, and semantic data and present early results showing the quality and range of data that has been collected. The main novelties of this dataset in comparison with other multi-biometric datasets are: 1. gait data exists for multiple views and is synchronised, allowing 3D reconstruction and analysis; 2. the face data is a sequence of images allowing for face recognition in video; 3. the ear data is acquired in a relatively unconstrained environment, as a subject walks past; and 4. the semantic data is considerably more extensive than has been available previously. We shall aim to show the advantages of this new data in biometric analysis, though the scope for such analysis is considerably greater than time and space allows for here
Ultrafast slow-light: Raman-induced delay of THz-bandwidth pulses
We propose and experimentally demonstrate a scheme to generate
optically-controlled delays based on off-resonant Raman absorption. Dispersion
in a transparency window between two neighboring, optically-activated Raman
absorption lines is used to reduce the group velocity of broadband 765 nm
pulses. We implement this approach in a potassium titanyl phosphate (KTP)
waveguide at room temperature, and demonstrate Raman-induced delays of up to
140 fs for a 650-fs duration, 1.8-THz bandwidth, signal pulse; the available
delay-bandwidth product is . Our approach is applicable to single
photon signals, offers wavelength tunability, and is a step toward processing
ultrafast photons.Comment: 5+4 pages, 4+2 figure
Toward quantum processing in molecules: A THz-bandwidth coherent memory for light
The unusual features of quantum mechanics are enabling the development of
technologies not possible with classical physics. These devices utilize
nonclassical phenomena in the states of atoms, ions, and solid-state media as
the basis for many prototypes. Here we investigate molecular states as a
distinct alternative. We demonstrate a memory for light based on storing
photons in the vibrations of hydrogen molecules. The THz-bandwidth molecular
memory is used to store 100-fs pulses for durations up to 1ns, enabling 10,000
operational time bins. The results demonstrate the promise of molecules for
constructing compact ultrafast quantum photonic technologies.Comment: 5 pages, 3 figures, 1 tabl
Quantum optical signal processing in diamond
Controlling the properties of single photons is essential for a wide array of
emerging optical quantum technologies spanning quantum sensing, quantum
computing, and quantum communications. Essential components for these
technologies include single photon sources, quantum memories, waveguides, and
detectors. The ideal spectral operating parameters (wavelength and bandwidth)
of these components are rarely similar; thus, frequency conversion and spectral
control are key enabling steps for component hybridization. Here we perform
signal processing of single photons by coherently manipulating their spectra
via a modified quantum memory. We store 723.5 nm photons, with 4.1 nm
bandwidth, in a room-temperature diamond crystal; upon retrieval we demonstrate
centre frequency tunability over 4.2 times the input bandwidth, and bandwidth
modulation between 0.5 to 1.9 times the input bandwidth. Our results
demonstrate the potential for diamond, and Raman memories in general, to be an
integrated platform for photon storage and spectral conversion.Comment: 6 pages, 4 figure
Storage of polarization-entangled THz-bandwidth photons in a diamond quantum memory
Bulk diamond phonons have been shown to be a versatile platform for the
generation, storage, and manipulation of high-bandwidth quantum states of
light. Here we demonstrate a diamond quantum memory that stores, and releases
on demand, an arbitrarily polarized 250 fs duration photonic qubit. The
single-mode nature of the memory is overcome by mapping the two degrees of
polarization of the qubit, via Raman transitions, onto two spatially distinct
optical phonon modes located in the same diamond crystal. The two modes are
coherently recombined upon retrieval and quantum process tomography confirms
that the memory faithfully reproduces the input state with average fidelity
with a total memory efficiency of . In an
additional demonstration, one photon of a polarization-entangled pair is stored
in the memory. We report that entanglement persists in the retrieved state for
up to 1.3 ps of storage time. These results demonstrate that the diamond phonon
platform can be used in concert with polarization qubits, a key requirement for
polarization-encoded photonic processing
Storage and retrieval of ultrafast single photons using a room-temperature diamond quantum memory
We report the storage and retrieval of single photons, via a quantum memory,
in the optical phonons of room-temperature bulk diamond. The THz-bandwidth
heralded photons are generated by spontaneous parametric downconversion and
mapped to phonons via a Raman transition, stored for a variable delay, and
released on demand. The second-order correlation of the memory output is
, demonstrating preservation of non-classical
photon statistics throughout storage and retrieval. The memory is low-noise,
high-speed and broadly tunable; it therefore promises to be a versatile
light-matter interface for local quantum processing applications.Comment: 6 pages, 4 figure
- …
