1,445 research outputs found

    Strain-specific bioaccumulation and intracellular distribution of Cd2+ in bacteria isolated from the rhizosphere, ectomycorrhizae, and fruitbodies of ectomycorrhizal fungi

    Get PDF
    Bioaccumulation of Cd(2+) in soil bacteria might represent an important route of metal transfer to associated mycorrhizal fungi and plants and may have potential as a tool to accelerate Cd(2+) extraction in the bioremediation of contaminated soils. The present study examined the bioaccumulation of Cd(2+) in 15 bacterial strains representing three phyla (Firmicutes, Proteobacteria, and Bacteroidetes) that were isolated from the rhizosphere, ectomycorrhizae, and fruitbody of ectomycorrhizal fungi. The strains Pseudomonas sp. IV-111-14, Variovorax sp. ML3-12, and Luteibacter sp. II-116-7 displayed the highest biomass productivity at the highest tested Cd(2+) concentration (2 mM). Microscopic analysis of the cellular Cd distribution revealed intracellular accumulation by strains Massilia sp. III–116-18, Pseudomonas sp. IV-111-14, and Bacillus sp. ML1-2. The quantities of Cd measured in the interior of the cells ranged from 0.87 to 1.31 weight % Cd. Strains originating from the rhizosphere exhibited higher Cd(2+) accumulation efficiencies than strains from ectomycorrhizal roots or fruitbodies. The high Cd tolerances of Pseudomonas sp. IV-111-16 and Bacillus sp. ML1-2 were attributed to the binding of Cd(2+) as cadmium phosphate. Furthermore, silicate binding of Cd(2+) by Bacillus sp. ML1-2 was observed. The tolerance of Massilia sp. III-116-18 to Cd stress was attributed to a simultaneous increase in K(+) uptake in the presence of Cd(2+) ions. We conclude that highly Cd-tolerant and Cd-accumulating bacterial strains from the genera Massilia sp., Pseudomonas sp., and Bacillus sp. might offer a suitable tool to improve the bioremediation efficiency of contaminated soils. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11356-014-3489-0) contains supplementary material, which is available to authorized users

    Physiological modeling of isoprene dynamics in exhaled breath

    Full text link
    Human breath contains a myriad of endogenous volatile organic compounds (VOCs) which are reflective of ongoing metabolic or physiological processes. While research into the diagnostic potential and general medical relevance of these trace gases is conducted on a considerable scale, little focus has been given so far to a sound analysis of the quantitative relationships between breath levels and the underlying systemic concentrations. This paper is devoted to a thorough modeling study of the end-tidal breath dynamics associated with isoprene, which serves as a paradigmatic example for the class of low-soluble, blood-borne VOCs. Real-time measurements of exhaled breath under an ergometer challenge reveal characteristic changes of isoprene output in response to variations in ventilation and perfusion. Here, a valid compartmental description of these profiles is developed. By comparison with experimental data it is inferred that the major part of breath isoprene variability during exercise conditions can be attributed to an increased fractional perfusion of potential storage and production sites, leading to higher levels of mixed venous blood concentrations at the onset of physical activity. In this context, various lines of supportive evidence for an extrahepatic tissue source of isoprene are presented. Our model is a first step towards new guidelines for the breath gas analysis of isoprene and is expected to aid further investigations regarding the exhalation, storage, transport and biotransformation processes associated with this important compound.Comment: 14 page

    Die Putin-Show

    Get PDF
    corecore