218 research outputs found

    Francisella Subverts Innate Immune Signaling: Focus On PI3K/Akt

    Get PDF
    Intracellular bacterial pathogens exploit host cells as a part of their lifecycle, and they do so by manipulating host cell signaling events. Many such bacteria are known to produce effector proteins that promote cell invasion, alter membrane trafficking, and disrupt signaling cascades. This review highlights recent advances in our understanding of signaling pathways involved in host cell responses to Francisella tularensis, a facultative Gram-negative intracellular pathogen that causes tularemia. We highlight several key pathways that are targeted by Francisella, with a focus on the phosphatidylinositol 3-kinase/Akt pathway. Lastly, we discuss the emerging role of microRNAs (miRs), specifically miR-155, as a key regulator of host signaling and defense

    Genetic identification of unique immunological responses in mice infected with virulent and attenuated Francisella tularensis

    Get PDF
    Francisella tularensis is a category A select agent based on its infectivity and virulence but disease mechanisms in infection remain poorly understood. Murine pulmonary models of infection were therefore employed to assess and compare dissemination and pathology and to elucidate the host immune response to infection with the highly virulent Type A F. tularensis strain Schu4 versus the less virulent Type B live vaccine strain (LVS). We found that dissemination and pathology in the spleen was significantly greater in mice infected with F. tularensis Schu4 compared to mice infected with F. tularensis LVS. Using gene expression rofiling to compare the response to infection with the two F. tularensis strains, we found that there were significant differences in the expression of genes involved in the apoptosis pathway, antigen processing and presentation pathways, and inflammatory response pathways in mice infected with Schu4 when compared to LVS. These transcriptional differences coincided with marked differences in dissemination and severity of organ lesions in mice infected with the Schu4 and LVS strains. Therefore, these findings indicate that altered apoptosis, antigen presentation and production of inflammatory mediators explain the differences in pathogenicity of F. tularensis Schu4 and LVS

    Akt and SHIP Modulate Francisella Escape from the Phagosome and Induction of the Fas-Mediated Death Pathway

    Get PDF
    Francisella tularensis infects macrophages and escapes phago-lysosomal fusion to replicate within the host cytosol, resulting in host cell apoptosis. Here we show that the Fas-mediated death pathway is activated in infected cells and correlates with escape of the bacterium from the phagosome and the bacterial burden. Our studies also demonstrate that constitutive activation of Akt, or deletion of SHIP, promotes phago-lysosomal fusion and limits bacterial burden in the host cytosol, and the subsequent induction of Fas expression and cell death. Finally, we show that phagosomal escape/intracellular bacterial burden regulate activation of the transcription factors sp1/sp3, leading to Fas expression and cell death. These data identify for the first time host cell signaling pathways that regulate the phagosomal escape of Francisella, leading to the induction of Fas and subsequent host cell death

    Project WISH: The Emerald City

    Get PDF
    Phase 3 of Project WISH saw the evolution of the Emerald City (E-City) from a collection of specialized independent analyses and ideas to a working structural design integrated with major support systems and analyses. Emphasis was placed on comparing and contrasting the closed and open cycle gas core nuclear rocket engines to further determine the optimum propulsive system for the E-City. Power and thermal control requirements were then defined and the question of how to meet these requirements was addressed. Software was developed to automate the mission/system/configuration analysis so changes dictated by various subsystem constraints could be managed efficiently and analyzed interactively. In addition, the liquid hydrogen propellant tank was statically designed for minimum mass and shape optimization using a finite element modeling package called SDRC I-DEAS. Spoke and shaft cross-sectional areas were optimized on ASTROS (Automated Structural Optimization System) for mass minimization. A structural dynamic analysis of the optimal structure also conducted using ASTROS enabled a study of the modes, frequencies, displacements, and accelerations of the E-City. Finally, the attitude control system design began with an initial mass moment of inertia analysis and was then designed and optimized using linear quadratic regulator control theory

    The Involvement of IL-17A in the Murine Response to Sub-Lethal Inhalational Infection with Francisella tularensis

    Get PDF
    Background: Francisella tularensis is an intercellular bacterium often causing fatal disease when inhaled. Previous reports have underlined the role of cell-mediated immunity and IFNc in the host response to Francisella tularensis infection. Methodology/Principal Findings: Here we provide evidence for the involvement of IL-17A in host defense to inhalational tularemia, using a mouse model of intranasal infection with the Live Vaccine Strain (LVS). We demonstrate the kinetics of IL-17A production in lavage fluids of infected lungs and identify the IL-17A-producing lymphocytes as pulmonary cd and Th17 cells. The peak of IL-17A production appears early during sub-lethal infection, it precedes the peak of immune activation and the nadir of the disease, and then subsides subsequently. Exogenous airway administration of IL-17A or of IL-23 had a limited yet consistent effect of delaying the onset of death from a lethal dose of LVS, implying that IL-17A may be involved in restraining the infection. The protective role for IL-17A was directly demonstrated by in vivo neutralization of IL-17A. Administration of anti IL-17A antibodies concomitantly to a sub-lethal airway infection with 0.16LD50 resulted in a fatal disease. Conclusion: In summary, these data characterize the involvement and underline the protective key role of the IL-17A axis in the lungs from inhalational tularemia

    MiR-155 Induction by F. novicida but Not the Virulent F. tularensis Results in SHIP Down-Regulation and Enhanced Pro-Inflammatory Cytokine Response

    Get PDF
    The intracellular Gram-negative bacterium Francisella tularensis causes the disease tularemia and is known for its ability to subvert host immune responses. Previous work from our laboratory identified the PI3K/Akt pathway and SHIP as critical modulators of host resistance to Francisella. Here, we show that SHIP expression is strongly down-regulated in monocytes and macrophages following infection with F. tularensis novicida (F.n.). To account for this negative regulation we explored the possibility that microRNAs (miRs) that target SHIP may be induced during infection. There is one miR that is predicted to target SHIP, miR-155. We tested for induction and found that F.n. induced miR-155 both in primary monocytes/macrophages and in vivo. Using luciferase reporter assays we confirmed that miR-155 led to down-regulation of SHIP, showing that it specifically targets the SHIP 3′UTR. Further experiments showed that miR-155 and BIC, the gene that encodes miR-155, were induced as early as four hours post-infection in primary human monocytes. This expression was dependent on TLR2/MyD88 and did not require inflammasome activation. Importantly, miR-155 positively regulated pro-inflammatory cytokine release in human monocytes infected with Francisella. In sharp contrast, we found that the highly virulent type A SCHU S4 strain of Francisella tularensis (F.t.) led to a significantly lower miR-155 response than the less virulent F.n. Hence, F.n. induces miR-155 expression and leads to down-regulation of SHIP, resulting in enhanced pro-inflammatory responses. However, impaired miR-155 induction by SCHU S4 may help explain the lack of both SHIP down-regulation and pro-inflammatory response and may account for the virulence of Type A Francisella

    Microarray Analysis of Human Monocytes Infected with Francisella tularensis Identifies New Targets of Host Response Subversion

    Get PDF
    Francisella tularensis is a gram-negative facultative bacterium that causes the disease tularemia, even upon exposure to low numbers of bacteria. One critical characteristic of Francisella is its ability to dampen or subvert the host immune response. In order to help understand the mechanisms by which this occurs, we performed Affymetrix microarray analysis on transcripts from blood monocytes infected with the virulent Type A Schu S4 strain. Results showed that expression of several host response genes were reduced such as those associated with interferon signaling, Toll-like receptor signaling, autophagy and phagocytosis. When compared to microarrays from monocytes infected with the less virulent F. tularensis subsp. novicida, we found qualitative differences and also a general pattern of quantitatively reduced pro-inflammatory signaling pathway genes in the Schu S4 strain. Notably, the PI3K / Akt1 pathway appeared specifically down-regulated following Schu S4 infection and a concomitantly lower cytokine response was observed. This study identifies several new factors potentially important in host cell subversion by the virulent Type A F. tularensis that may serve as novel targets for drug discovery

    Host Factors Required for Modulation of Phagosome Biogenesis and Proliferation of Francisella tularensis within the Cytosol

    Get PDF
    Francisella tularensis is a highly infectious facultative intracellular bacterium that can be transmitted between mammals by arthropod vectors. Similar to many other intracellular bacteria that replicate within the cytosol, such as Listeria, Shigella, Burkholderia, and Rickettsia, the virulence of F. tularensis depends on its ability to modulate biogenesis of its phagosome and to escape into the host cell cytosol where it proliferates. Recent studies have identified the F. tularensis genes required for modulation of phagosome biogenesis and escape into the host cell cytosol within human and arthropod-derived cells. However, the arthropod and mammalian host factors required for intracellular proliferation of F. tularensis are not known. We have utilized a forward genetic approach employing genome-wide RNAi screen in Drosophila melanogaster-derived cells. Screening a library of ∼21,300 RNAi, we have identified at least 186 host factors required for intracellular bacterial proliferation. We silenced twelve mammalian homologues by RNAi in HEK293T cells and identified three conserved factors, the PI4 kinase PI4KCA, the ubiquitin hydrolase USP22, and the ubiquitin ligase CDC27, which are also required for replication in human cells. The PI4KCA and USP22 mammalian factors are not required for modulation of phagosome biogenesis or phagosomal escape but are required for proliferation within the cytosol. In contrast, the CDC27 ubiquitin ligase is required for evading lysosomal fusion and for phagosomal escape into the cytosol. Although F. tularensis interacts with the autophagy pathway during late stages of proliferation in mouse macrophages, this does not occur in human cells. Our data suggest that F. tularensis utilizes host ubiquitin turnover in distinct mechanisms during the phagosomal and cytosolic phases and phosphoinositide metabolism is essential for cytosolic proliferation of F. tularensis. Our data will facilitate deciphering molecular ecology, patho-adaptation of F. tularensis to the arthropod vector and its role in bacterial ecology and patho-evolution to infect mammals
    corecore