1,530 research outputs found

    Devitrite-based optical diffusers.

    Get PDF
    Devitrite is a novel material produced by heat treatment of commercial soda-lime-silica glass. It consists of fans of needle-like crystals which can extend up to several millimeters and have interspacings of up to a few hundred nanometers. To date, only the material properties of devitrite have been reported, and there has been a distinct lack of research on using it for optical applications. In this study, we demonstrate that randomly oriented fans of devitrite crystals can act as highly efficient diffusers for visible light. Devitrite crystals produce phase modulation of light because of their relatively high anisotropy. The nanoscale spacings between these needles enable light to be diffused to large scattering angles. Experimentally measured results suggest that light diffusion patterns with beam widths of up to 120° are produced. Since devitrite is an inexpensive material to produce, it has the potential to be used in a variety of commercial applications.HB would like to thank The Leverhulme Trust and Cambridge Philosophical Society for research funding.This is the author accepted manuscript. The final version can be found on the publisher's website at: http://pubs.acs.org/doi/abs/10.1021/nn500155e Copyright © 2014 American Chemical Societ

    Characterization of Shewanella oneidensis MtrC: a cell-surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors

    Get PDF
    MtrC is a decaheme c-type cytochrome associated with the outer cell membrane of Fe(III)-respiring species of the Shewanella genus. It is proposed to play a role in anaerobic respiration by mediating electron transfer to extracellular mineral oxides that can serve as terminal electron acceptors. The present work presents the first spectropotentiometric and voltammetric characterization of MtrC, using protein purified from Shewanella oneidensis MR-1. Potentiometric titrations, monitored by UV–vis absorption and electron paramagnetic resonance (EPR) spectroscopy, reveal that the hemes within MtrC titrate over a broad potential range spanning between approximately +100 and approximately -500 mV (vs. the standard hydrogen electrode). Across this potential window the UV–vis absorption spectra are characteristic of low-spin c-type hemes and the EPR spectra reveal broad, complex features that suggest the presence of magnetically spin-coupled low-spin c-hemes. Non-catalytic protein film voltammetry of MtrC demonstrates reversible electrochemistry over a potential window similar to that disclosed spectroscopically. The voltammetry also allows definition of kinetic properties of MtrC in direct electron exchange with a solid electrode surface and during reduction of a model Fe(III) substrate. Taken together, the data provide quantitative information on the potential domain in which MtrC can operate

    Subtype-Selective Small Molecule Inhibitors Reveal a Fundamental Role for Nav1.7 in Nociceptor Electrogenesis, Axonal Conduction and Presynaptic Release.

    Get PDF
    Human genetic studies show that the voltage gated sodium channel 1.7 (Nav1.7) is a key molecular determinant of pain sensation. However, defining the Nav1.7 contribution to nociceptive signalling has been hampered by a lack of selective inhibitors. Here we report two potent and selective arylsulfonamide Nav1.7 inhibitors; PF-05198007 and PF-05089771, which we have used to directly interrogate Nav1.7's role in nociceptor physiology. We report that Nav1.7 is the predominant functional TTX-sensitive Nav in mouse and human nociceptors and contributes to the initiation and the upstroke phase of the nociceptor action potential. Moreover, we confirm a role for Nav1.7 in influencing synaptic transmission in the dorsal horn of the spinal cord as well as peripheral neuropeptide release in the skin. These findings demonstrate multiple contributions of Nav1.7 to nociceptor signalling and shed new light on the relative functional contribution of this channel to peripheral and central noxious signal transmission.The funder provided support in the form of salaries for authors [AA, AB, MC, JT, MM, AW, EP, AG, PJC, RD, DP, ZL, BM, CW, NS, RS, PS, NC, DK, RB, ES], but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific roles of these authors are articulated in the ‘author contributions’ section

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    Reversal of stress fibre formation by Nitric Oxide mediated RhoA inhibition leads to reduction in the height of preformed thrombi

    Get PDF
    Evidence has emerged to suggest that thrombi are dynamic structures with distinct areas of differing platelet activation and inhibition. We hypothesised that Nitric oxide (NO), a platelet inhibitor, can modulate the actin cytoskeleton reversing platelet spreading, and therefore reduce the capability of thrombi to withstand a high shear environment. Our data demonstrates that GSNO, DEANONOate, and a PKG-activating cGMP analogue reversed stress fibre formation and increased actin nodule formation in adherent platelets. This effect is sGC dependent and independent of ADP and thromboxanes. Stress fibre formation is a RhoA dependent process and NO induced RhoA inhibition, however, it did not phosphorylate RhoA at ser188 in spread platelets. Interestingly NO and PGI2 synergise to reverse stress fibre formation at physiologically relevant concentrations. Analysis of high shear conditions indicated that platelets activated on fibrinogen, induced stress fibre formation, which was reversed by GSNO treatment. Furthermore, preformed thrombi on collagen post perfused with GSNO had a 30% reduction in thrombus height in comparison to the control. This study demonstrates that NO can reverse key platelet functions after their initial activation and identifies a novel mechanism for controlling excessive thrombosis

    Quantum dot interactions with and toxicity to Shewanella oneidensis MR-1

    Get PDF
    Combining abiotic photosensitisers such as quantum dots (QDs) with non-photosynthetic bacteria presents an intriguing concept into the design of artificial photosynthetic organisms and solar-driven fuel production. Shewanella oneidensis MR-1 (MR-1) is a versatile bacterium concerning respiration, metabolism and biocatalysis, and is a promising organism for artificial photosynthesis as the bacterium's synthetic and catalytic ability provides a potential system for bacterial biohydrogen production. MR-1's hydrogenases are present in the periplasmatic space. It follows that for photoenergised electrons to reach these enzymes, QDs will need to be able to enter the periplasm, or electrons need to enter the periplasm via the Mtr pathway that is responsible for MR-1's extracellular electron transfer ability. As a step towards this goal, various QDs were tested for their photo-reducing potential, nanotoxicology and further for their interaction with MR-1. CdTe/CdS/TGA, CdTe/CdS/Cysteamine, a commercial, negatively charged CdTe and CuInS2/ZnS/PMAL QDs were examined. The photoreduction potential of the QDs was confirmed by measuring their ability to photoreduce methyl viologen with different sacrificial electron donors. The commercial CdTe and CuInS2/ZnS/PMAL QDs showed no toxicity towards MR-1 as evaluated by a colony-forming units method and a fluorescence viability assay. Only the commercial negatively charged CdTe QDs showed good interaction with MR-1. With transmission electron microscopy, QDs were observed both in the cytoplasm and periplasm. These results inform on the possibilities and bottlenecks when developing bionanotechnological systems for the photosynthetic production of biohydrogen by MR-1

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    corecore