9,071 research outputs found

    The Chandra X-Ray Observatory's Radiation Environment and the AP-8/AE-8 Model

    Full text link
    The Chandra X-ray Observatory (CXO) was launched on July 23, 1999 and reached its final orbit on August 7, 1999. The CXO is in a highly elliptical orbit, approximately 140,000 km x 10,000 km, and has a period of approximately 63.5 hours (~ 2.65 days). It transits the Earth's Van Allen belts once per orbit during which no science observations can be performed due to the high radiation environment. The Chandra X-ray Observatory Center (CXC) currently uses the National Space Science Data Center's ``near Earth'' AP-8/AE-8 radiation belt model to predict the start and end times of passage through the radiation belts. However, our scheduling software uses only a simple dipole model of the Earth's magnetic field. The resulting B, L magnetic coordinates, do not always give sufficiently accurate predictions of the start and end times of transit of the Van Allen belts. We show this by comparing to the data from Chandra's on-board radiation monitor, the EPHIN (Electron, Proton, Helium Instrument particle detector) instrument. We present evidence that demonstrates this mis-timing of the outer electron radiation belt as well as data that also demonstrate the significant variablity of one radiation belt transit to the next as experienced by the CXO. We also present an explanation for why the dipole implementation of the AP-8/AE-8 model is not ideally suited for the CXO. Lastly, we provide a brief discussion of our on-going efforts to identify a model that accounts for radiation belt variability, geometry, and one that can be used for observation scheduling purposes.Comment: 12 pgs, 6 figs, for SPIE 4012 (Paper 76

    Leading quantum gravitational corrections to QED

    Get PDF
    We consider the leading post-Newtonian and quantum corrections to the non-relativistic scattering amplitude of charged spin-1/2 fermions in the combined theory of general relativity and QED. The coupled Dirac-Einstein system is treated as an effective field theory. This allows for a consistent quantization of the gravitational field. The appropriate vertex rules are extracted from the action, and the non-analytic contributions to the 1-loop scattering matrix are calculated in the non-relativistic limit. The non-analytical parts of the scattering amplitude are known to give the long range, low energy, leading quantum corrections, are used to construct the leading post-Newtonian and quantum corrections to the two-particle non-relativistic scattering matrix potential for two massive fermions with electric charge.Comment: 14 pages, 29 figures, format RevTex

    Allometry and growth of eight tree taxa in United Kingdom woodlands.

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0As part of a project to develop predictive ecosystem models of United Kingdom woodlands we have collated data from two United Kingdom woodlands - Wytham Woods and Alice Holt. Here we present data from 582 individual trees of eight taxa in the form of summary variables relating to the allometric relationships between trunk diameter, height, crown height, crown radius and trunk radial growth rate to the tree's light environment and diameter at breast height. In addition the raw data files containing the variables from which the summary data were obtained. Large sample sizes with longitudinal data spanning 22 years make these datasets useful for future studies concerned with the way trees change in size and shape over their life-span

    Mechanisms of Bacterial Extracellular Electron Exchange.

    Get PDF
    The biochemical mechanisms by which microbes interact with extracellular soluble metal ions and insoluble redox-active minerals have been the focus of intense research over the last three decades. The process presents two challenges to the microorganism; firstly electrons have to be transported at the cell surface, which in Gram negative bacteria presents an additional problem of electron transfer across the ~ 6 nm of the outer membrane. Secondly the electrons must be transferred to or from the terminal electron acceptors or donors. This review covers the known mechanisms that bacteria use to transport electrons across the cell envelope to external electron donors/acceptors. In Gram negative bacteria electron transfer across the outer membrane involves the use of an outer membrane β-barrel and cytochrome. These can be in the form of a porin-cytochrome protein, such as Cyc2 of Acidothiobacillus ferrioxydans, or a multiprotein porin-cytochrome complex like MtrCAB of Shewanella oneidensis MR-1. For mineral respiring organisms there is the additional challenge of transferring the electrons from the cell to mineral surface. For the strict anaerobe Geobacter sulfurreducens this requires electron transfer through conductive pili to associated cytochrome OmcS that directly reduces Fe(III)oxides, while the facultative anaerobe S. oneidensis MR-1 accomplishes mineral reduction through direct membrane contact, contact through filamentous extentions and soluble flavin shuttles, all of which require the outer membrane cytochromes MtrC and OmcA in addition to secreted flavin

    Multi-heme Cytochromes in Shewanella oneidensis MR-1:Structures, functions and opportunities

    Get PDF
    Multi-heme cytochromes are employed by a range of microorganisms to transport electrons over distances of up to tens of nanometers. Perhaps the most spectacular utilization of these proteins is in the reduction of extracellular solid substrates, including electrodes and insoluble mineral oxides of Fe(III) and Mn(III/IV), by species of Shewanella and Geobacter. However, multi-heme cytochromes are found in numerous and phylogenetically diverse prokaryotes where they participate in electron transfer and redox catalysis that contributes to biogeochemical cycling of N, S and Fe on the global scale. These properties of multi-heme cytochromes have attracted much interest and contributed to advances in bioenergy applications and bioremediation of contaminated soils. Looking forward there are opportunities to engage multi-heme cytochromes for biological photovoltaic cells, microbial electrosynthesis and developing bespoke molecular devices. As a consequence it is timely to review our present understanding of these proteins and we do this here with a focus on the multitude of functionally diverse multi-heme cytochromes in Shewanella oneidensis MR-1. We draw on findings from experimental and computational approaches which ideally complement each other in the study of these systems: computational methods can interpret experimentally determined properties in terms of molecular structure to cast light on the relation between structure and function. We show how this synergy has contributed to our understanding of multi-heme cytochromes and can be expected to continue to do so for greater insight into natural processes and their informed exploitation in biotechnologies

    Optimality Theory as a Framework for Lexical Acquisition

    Full text link
    This paper re-investigates a lexical acquisition system initially developed for French.We show that, interestingly, the architecture of the system reproduces and implements the main components of Optimality Theory. However, we formulate the hypothesis that some of its limitations are mainly due to a poor representation of the constraints used. Finally, we show how a better representation of the constraints used would yield better results

    Jet-Induced Nucleosynthesis in Misaligned Microquasars

    Get PDF
    The jet axes and the orbital planes of microquasar systems are usually assumed to be approximately perpendicular, eventhough this is not currently an observational requirement. On the contrary, in one of the few systems where the relative orientations are well-constrained, V4641Sgr, the jet axis is known to lie not more than ~36 degrees from the binary plane. Such a jet, lying close to the binary plane, and traveling at a significant fraction of the speed of light may periodically impact the secondary star initiating nuclear reactions on its surface. The integrated yield of such nuclear reactions over the age of the binary system (less the radiative mass loss) will detectably alter the elemental abundances of the companion star. This scenario may explain the anomalously high Li enhancements (roughly ~20-200 times the sun's photospheric value; or, equivalently, 0.1-1 times the average solar system value) seen in the companions of some black-hole X-ray binary systems. (Such enhancements are puzzling since Li nuclei are exceedingly fragile - being easily destroyed in the interiors of stars - and Li would be expected to be depleted rather than enhanced there.) Gamma-ray line signatures of the proposed process could include the 2.22 MeV neutron capture line as well as the 0.478 MeV 7Li* de-excitation line, both of which may be discernable with the INTEGRAL satellite if produced in an optically thin region during a large outburst. For very energetic jets, a relatively narrow neutral pion gamma-decay signature at 67.5 MeV could also be measurable with the GLAST satellite. We argue that about 10-20% of all microquasar systems ought to be sufficiently misaligned as to be undergoing the proposed jet-secondary impacts.Comment: ApJ, accepted. Includes referee's suggestions and some minor clarifications over previous versio

    Dynamics of quartz tuning fork force sensors used in scanning probe microscopy

    Full text link
    We have performed an experimental characterization of the dynamics of oscillating quartz tuning forks which are being increasingly used in scanning probe microscopy as force sensors. We show that tuning forks can be described as a system of coupled oscillators. Nevertheless, this description requires the knowledge of the elastic coupling constant between the prongs of the tuning fork, which has not yet been measured. Therefore tuning forks have been usually described within the single oscillator or the weakly coupled oscillators approximation that neglects the coupling between the prongs. We propose three different procedures to measure the elastic coupling constant: an opto-mechanical method, a variation of the Cleveland method and a thermal noise based method. We find that the coupling between the quartz tuning fork prongs has a strong influence on the dynamics and the measured motion is in remarkable agreement with a simple model of coupled harmonic oscillators. The precise determination of the elastic coupling between the prongs of a tuning fork allows to obtain a quantitative relation between the resonance frequency shift and the force gradient acting at the free end of a tuning fork prong.Comment: 16 pages, 6 figures, 2 Table
    corecore