878 research outputs found

    Measurement of Magnetic Axis in Accelerator Magnets: Critical Comparison of Methods and Instruments

    Get PDF
    We review 19 measurement systems for the magnetic axis of accelerator magnets, used to align machine components. First, we provide some background information and we describe briefly the instruments and methods used for the magnetic and the geometric measurements. For all systems we give then a performance summary in terms of magnet parameters and measurement uncertainties. The dataset is analyzed statistically to identify the parameter with the most influence on the total uncertainty, which is magnet length. Finally we derive scaling laws relating uncertainties to magnet's parameters, and we discuss the relative performance of the various methods

    Tc=21K in epitaxial FeSe0.5Te0.5 thin films with biaxial compressive strain

    Full text link
    High purity epitaxial FeSe0.5Te0.5 thin films with different thickness were grown by Pulsed Laser Ablation on different substrates. By varying the film thickness, Tc up to 21K were observed, significantly larger than the bulk value. Structural analyses indicated that the a axis changes significantly with the film thickness and is linearly related to the Tc. The latter result indicates the important role of the compressive strain in enhancing Tc. Tc is also related to both the Fe-(Se,Te) bond length and angle, suggesting the possibility of further enhancement

    A Device to Measure Magnetic and Mechanical Axis of Superconducting Magnets for the Large Hadron Collider at CERN

    Get PDF
    The LHC will be composed of 1232 horizontally curved, 15 meter long, cryodipoles and 474 Short Straight Sections, being assembled by different manufacturers. Magnetic axis alignment is an essential part of the magnets quality for two reasons: first, to be able to install correctly the magnets in the tunnel w.r.t. the reference beam orbit; secondly, to assess the relative alignment between the magnets composing the assembly, i.e. spool pieces for the dipoles and larger correctors for the SSS. A system called AC mole is being used extensively to measure magnetic and geometric axis, as well as roll angle, for every single magnet composing all the SSS. This paper describes its performance, its first years of operation, as well as the improvements that have made it very powerful, versatile and easy to use

    Magnetic Measurement of Alignment of Main LHC Dipoles and Associated Correctors

    Get PDF
    We discuss the method developed for the verification of alignment of magnetic elements contained in the LHC cryodipole cold mass during series tests at CERN. First, we outline motivations and requirements and then we focus on test strategy, equipment and procedures. Our goal is to express the magnetic field of the dipole and of its associated correctors w.r.t. the reference beam line, not accessible during cryogenic tests. To do so, we use traveling harmonic coil probes ("moles") that allow simultaneous measurement of the field and of the coil position. A laser tracker is used to relate these measurements to fiducials. In the dipole, the axis of the Quadrupole Configured Dipole (QCD) is used as an intermediate reference for the transfer. We provide details on the devices used for measurements in warm and cold conditions, some results from prototypes and pre-series dipoles and an assessment of the precision expected for the series tests

    A Tool for Simulating Rotating Coil Magnetometers

    Get PDF
    When investigating the quality of a magnetic measurement system, one observes difficulties to identify the "trouble maker" of such a system as different effects can yield similar influences on the measurement results.We describe a tool in this paper that allows to investigate numerically the effects produced by different imperfections of components of such a system, including, but not limited to vibration and movements of the rotating coil, influence of electrical noise on the system, angular encoder imperfections. This system can simulate the deterministic and stochastic parts of those imperfections. We outline the physical models used that are generally based on experience or first principles. Comparisons to analytical results are shown. The modular structure of the general design of this tool permits to include new modules for new devices and effects

    Sensitivity and Accuracy of the Systems for the Magnetic Measurements of the LHC Magnets at CERN

    Get PDF
    Beam optics of the LHC accelerator require stringent control of the field quality of the main dipole and quadrupole magnets. The field quality measurements need challenging accuracy given the small size of the aperture (50 mm) : relative strength of the magnets within 2×10-4, harmonics in the ppm range, axis determination within 0.1 mm, main field direction within 0.2 mrad. We present a detailed analysis of the accuracy and reproducibility obtained with the equipment presently available for the qualification tests of the first series magnets

    Performance of the Room Temperature Systems for Magnetic Field Measurements of the LHC Superconducting Magnets

    Get PDF
    The LHC will be composed of 1232 horizontally curved, 15-meter long, superconducting dipole assemblies and 474 Short Straight Sections containing various types of quadrupoles. These magnets are manufactured by several European companies and half of them are currently produced. The field quality at room temperature is strictly monitored to guide and validate the assembly at different stages of the production in the industry. Dipoles and quadrupoles are measured with two different rotating coil systems. These âワmolesâ travel inside the 50 mm aperture and accurately measure the field and gradient strength integrated over the length, the field direction and high order harmonics. We describe here these two systems, their performance and the experience gained through the two first years of operation

    A Mole for Warm Magnetic and Optical Measurements of LHC Dipoles

    Get PDF
    A new rotating coil probe (a mole) has been developed for the simultaneous measurement of the magnetic field and magnetic axis of warm superconducting LHC dipoles and associated corrector windings. The mole houses a radial rotating coil and travels inside the magnet aperture by means of an externally driven two-way traction belt. The coil is rotated by an on-board piezo motor, being tested in view of future devices for cold measurements as the only type of motor compatible with strong magnetic fields. A virtual light spot is generated in the coil center by a LED source. The position of this light spot is measured from the outside by a system including a telescope, a CCD camera and a DSP. Jigs on reference granite tables are used to transfer the optical measurements to the magnet fiducials. We describe here the main characteristics and performance of the mol

    Geometric and Magnetic Axes of the LHC Dipole

    Get PDF
    The 15-m long superconducting dipoles of the Large Hadron Collider (LHC) with two-in-one design are curved by about 5 mrad to follow the beam trajectory. They are supported on three cold feet to minimise the vertical sagitta induced by their 35 tonnes weight. The cold masses contain at both ends local multipolar correctors to compensate for the detrimental effect of persistent current during injection. We discuss how we measure and control the geometrical shape of the cold mass and the alignment of the associated correctors and how we identify the magnetic axis of the field-shape harmonics with respect to the expected beam reference orbit. We present results relative to prototype dipoles obtained both at room temperature and in operational conditions at 1.9 K
    corecore