1,999 research outputs found
Rifting and arc-related early Paleozoic volcanism along the North Gondwana margin: geochemical and geological evidence from Sardinia (Italy)
Three series of volcanic rocks accumulated during the Cambrian to Silurian in the metasediment-dominated Variscan basement of Sardinia. They provide a record of the changing geodynamic setting of the North Gondwana margin between Upper Cambrian and earliest Silurian. A continuous Upper Cambrian–Lower Ordovician succession of felsic submarine and subaerial rocks, dominantly transitional alkaline in character (ca. 492–480 Ma), is present throughout the Variscan nappes. Trace element data, together with Nd isotope data that point to a depleted mantle source, indicate an ensialic environment. A Middle Ordovician (ca. 465 Ma) calc-alkaline bimodal suite, restricted to the external Variscan nappes, overlies the Sardic Unconformity. Negative ϵNdi values (−3.03 to −5.75) indicate that the suite is a product of arc volcanism from a variably enriched mantle. A Late Ordovician–Early Silurian (ca. 440 Ma) volcano-sedimentary cycle consists of an alkalic mafic suite in a post-Caradocian transgressive sequence. Feeder dykes cut the pre-Sardic sequence. The alkali basalts are enriched in Nb-Ta and have Zr/Nb ratios in the range 4.20–30.90 (typical of a rift environment) and positive ϵNdi values that indicate a depleted mantle source. Trachyandesite lavas have trace element contents characteristic of within-plate basalt differentiates, with evidence of minor crustal contamination
Canard Cycles and Poincar\'e Index of Non-Smooth Vector Fields on the Plane
This paper is concerned with closed orbits of non-smooth vector fields on the
plane. For a subclass of non-smooth vector fields we provide necessary and
sufficient conditions for the existence of canard kind solutions. By means of a
regularization we prove that the canard cycles are singular orbits of singular
perturbation problems which are limit periodic sets of a sequence of limit
cycles. Moreover, we generalize the Poincar\'e Index for non-smooth vector
fields.Comment: 20 pages, 25 figure
Photoinduced Electron Pairing in a Driven Cavity
We demonstrate how virtual scattering of laser photons inside a cavity via two-photon processes can induce controllable long-range electron interactions in two-dimensional materials. We show that laser light that is red (blue) detuned from the cavity yields attractive (repulsive) interactions whose strength is proportional to the laser intensity. Furthermore, we find that the interactions are not screened effectively except at very low frequencies. For realistic cavity parameters, laser-induced heating of the electrons by inelastic photon scattering is suppressed and coherent electron interactions dominate. When the interactions are attractive, they cause an instability in the Cooper channel at a temperature proportional to the square root of the driving intensity. Our results provide a novel route for engineering electron interactions in a wide range of two-dimensional materials including AB-stacked bilayer graphene and the conducting interface between LaAlO3 and SrTiO3
Melnikov analysis in nonsmooth differential systems with nonlinear switching manifold
We study the family of piecewise linear differential systems in the plane
with two pieces separated by a cubic curve. Our main result is that 7 is a
lower bound for the Hilbert number of this family. In order to get our main
result, we develop the Melnikov functions for a class of nonsmooth differential
systems, which generalizes, up to order 2, some previous results in the
literature. Whereas the first order Melnikov function for the nonsmooth case
remains the same as for the smooth one (i.e. the first order averaged function)
the second order Melnikov function for the nonsmooth case is different from the
smooth one (i.e. the second order averaged function). We show that, in this
case, a new term depending on the jump of discontinuity and on the geometry of
the switching manifold is added to the second order averaged function
Orographic triggering of long lived convection in three dimensions
A significant fraction of the occurrences of intense flash floods is due to quasi-stationary or long-lived convection that may insist on the same place for many hours, producing high values of accumulated precipitation. One of the elements that favour the initiation and anchoring of the convective system (MCS) is the orography. In one of the most severe floods (Gard basin in southern France, 8-9 September 2002), the orography of the Massif Central played a rather unusual role, favouring the onset and maintenance of the MCS at some distance upstream of the main orographic slope. In the present work the initial atmospheric conditions of this event have been largely idealized, taking horizontally uniform values for wind, temperature and humidity profiles, and a simplified isolated orography representing the sole Massif Central. A convective system is initiated in the non-hydrostatic simulations, embedded in a quasi-stationary solution of flow over the orography. It is shown that the triggering of convection occurs in the convergence zone immediately upstream of the orographic obstacle, at an altitude comparable with the mountain height. The subsequent growth of the mesoscale convective system is associated with a slow eastward drift, with the intense precipitation located upstream of the mountain and with the formation of a gust front that propagates against the incoming basic flow. Sensitivity experiments show that the development of convection critically depends on mountain height and moisture content. Although the results obtained in such idealized conditions do not reflect all the observed characteristics of the real event, they contribute to clarify the role of the orography in triggering and maintaining strong convection
Imaging magnetic vortex configurations in ferromagnetic nanotubes
We image the remnant magnetization configurations of CoFeB and permalloy
nanotubes (NTs) using x-ray magnetic circular dichroism photo-emission electron
microscopy. The images provide direct evidence for flux-closure configurations,
including a global vortex state, in which magnetization points
circumferentially around the NT axis. Furthermore, micromagnetic simulations
predict and measurements confirm that vortex states can be programmed as the
equilibrium remnant magnetization configurations by reducing the NT aspect
ratio.Comment: 14 pages, 4 figures, link to supplementary informatio
Numerical study of a banded precipitation event over Italy
Satellite images of 30 October 2008 show the development
over north-central Italy of rainbands and multiple
waves during a strong south-westerly wind episode
associated with a deepening synoptic trough and
cold front passage.
The event was studied by means of the ISAC model chain constituted
of the hydrostatic model BOLAM and the nested non-hydrostatic model
MOLOCH at 1.1 km resolution.
Diagnostics of model output was performed to reveal the
physical origin of the dynamical features and precipitation
field as simulated.
Based on our results we propose a theoretical framework in
which symmetric instability underlies some of the observed
precipitation patterns
- …
