31,018 research outputs found
Boundary regularity for the Poisson equation in reifenberg-flat domains
This paper is devoted to the investigation of the boundary regularity for the
Poisson equation {{cc} -\Delta u = f & \text{in} \Omega u= 0 & \text{on}
\partial \Omega where belongs to some and is a
Reifenberg-flat domain of More precisely, we prove that given an
exponent , there exists an such that the
solution to the previous system is locally H\"older continuous provided
that is -Reifenberg-flat. The proof is based on
Alt-Caffarelli-Friedman's monotonicity formula and Morrey-Campanato theorem
A Generalization of Connes-Kreimer Hopf Algebra
``Bonsai'' Hopf algebras, introduced here, are generalizations of
Connes-Kreimer Hopf algebras, which are motivated by Feynman diagrams and
renormalization. We show that we can find operad structure on the set of
bonsais. We introduce a new differential on these bonsai Hopf algebras, which
is inspired by the tree differential. The cohomologies of these are computed
here, and the relationship of this differential with the appending operation
of Connes-Kreimer Hopf algebras is investigated
Multimodal Speech Emotion Recognition Using Audio and Text
Speech emotion recognition is a challenging task, and extensive reliance has
been placed on models that use audio features in building well-performing
classifiers. In this paper, we propose a novel deep dual recurrent encoder
model that utilizes text data and audio signals simultaneously to obtain a
better understanding of speech data. As emotional dialogue is composed of sound
and spoken content, our model encodes the information from audio and text
sequences using dual recurrent neural networks (RNNs) and then combines the
information from these sources to predict the emotion class. This architecture
analyzes speech data from the signal level to the language level, and it thus
utilizes the information within the data more comprehensively than models that
focus on audio features. Extensive experiments are conducted to investigate the
efficacy and properties of the proposed model. Our proposed model outperforms
previous state-of-the-art methods in assigning data to one of four emotion
categories (i.e., angry, happy, sad and neutral) when the model is applied to
the IEMOCAP dataset, as reflected by accuracies ranging from 68.8% to 71.8%.Comment: 7 pages, Accepted as a conference paper at IEEE SLT 201
- …
