26 research outputs found
Comparative Quantification of Contractile Force of Cardiac Muscle Using a Micro-mechanical Cell Force Measurement System
Speed harmonisation and merge control using connected automated vehicles on a highway lane closure: a reinforcement learning approach
A lane closure bottleneck usually leads to traffic congestion and a waste of fuel consumption on highways. In mixed traffic that consists of human-driven vehicles and connected automated vehicles (CAVs), the CAVs can be used for traffic control to improve the traffic flow. The authors propose speed harmonisation and merge control, taking advantage of CAVs to alleviate traffic congestion at a highway bottleneck area. To this end, they apply a reinforcement learning algorithm called deep Q network to train behaviours of CAVs. By training the merge control Q-network, CAVs learn a merge mechanism to improve the mixed traffic flow at the bottleneck area. Similarly, speed harmonisation Q-network learns speed harmonisation to reduce fuel consumption and alleviate traffic congestion by controlling the speed of following vehicles. After training two Q-networks of the merge mechanism and speed harmonisation, they evaluate the trained Q-networks under various conditions in terms of vehicle arrival rates and CAV market penetration rates. The simulation results indicate that the proposed approach improves the mixed traffic flow by increasing the throughput up to 30% and reducing the fuel consumption up to 20%, when compared to the late merge control without speed harmonisation. © 2020 The Institution of Engineering and Technology.FALS
Speed harmonisation and merge control using connected automated vehicles on a highway lane closure: a reinforcement learning approach
Field Evaluation of Vehicle to Infrastructure Communication-Based Eco-Driving Guidance and Eco-Signal System
In urban areas, the main factor causing excessive fuel consumption is stop-and-go, which is prevalent at urban intersections. To decrease fuel consumption at the intersections, various methods have been proposed and evaluated using simulation models and driving simulators. However, it is not known how reliable the driving simulator results would be when compared with those of the field test. In this paper, eco-driving guidance and eco-signal system based on vehicle-to-infrastructure communication are developed and tested in the field in a multi-vehicle environment. They were also tested using a driving simulator and the results were compared with those of the field test. This was intended to assess the reliability of driving simulatorbased study. The field test results at an isolated intersection indicated that the eco-driving guidance could save the fuel consumption around 20%-40% and the eco-signal system could reduce the fuel consumption up to 45%. Although the absolute fuel consumptions between the driving simulator test and the field test did not match, the results from both tests confirmed better performance with eco-driving guidance and eco-signal system when compared with the base scenarios. This indicates that a driving simulator is an effective tool for assessing relative benefits of eco-driving guidance and eco-signal system. © National Academy of Sciences: Transportation Research Board 2018.1
Effect of Epoxide Content on the Vulcanizate Structure of Silica-Filled Epoxidized Natural Rubber (ENR) Compounds
The demand for truck–bus radial (TBR) tires with enhanced fuel efficiency has grown in recent years. Many studies have investigated silica-filled natural rubber (NR) compounds to address these needs. However, silica-filled compounds offer inferior abrasion resistance compared to carbon black-filled compounds. Further, the use of NR as a base rubber can hinder silanization and coupling reactions due to interference by proteins and lipids. Improved silica dispersion be achieved without the use of a silane coupling agent by introducing epoxide groups to NR, which serve as silica-affinitive functional groups. Furthermore, the coupling reaction can be promoted by facilitating chemical interaction between the hydroxyl group of silica and the added epoxide groups. Thus, this study evaluated the properties of commercialized NR, ENR-25, and ENR-50 compounds with or without an added silane coupling agent, and the filler–rubber interaction was quantitatively calculated using vulcanizate structure analysis. The increased epoxide content, when the silane coupling agent was not used, improved silica dispersion, abrasion resistance, fuel efficiency, and wet grip. Once a basic level of silica dispersion was secured by using the silane coupling agent, both the abrasion resistance and wet grip improved with increasing epoxide content. Furthermore, the silane coupling agent could be partially replaced by ENR due to the high filler–rubber interaction between the ENR and silica. Therefore, epoxidation shows potential for resolving the issues associated with poor coupling reactions and abrasion resistance in silica-filled NR compounds
Effect of Epoxide Content on the Vulcanizate Structure of Silica-Filled Epoxidized Natural Rubber (ENR) Compounds
The demand for truck–bus radial (TBR) tires with enhanced fuel efficiency has grown in recent years. Many studies have investigated silica-filled natural rubber (NR) compounds to address these needs. However, silica-filled compounds offer inferior abrasion resistance compared to carbon black-filled compounds. Further, the use of NR as a base rubber can hinder silanization and coupling reactions due to interference by proteins and lipids. Improved silica dispersion be achieved without the use of a silane coupling agent by introducing epoxide groups to NR, which serve as silica-affinitive functional groups. Furthermore, the coupling reaction can be promoted by facilitating chemical interaction between the hydroxyl group of silica and the added epoxide groups. Thus, this study evaluated the properties of commercialized NR, ENR-25, and ENR-50 compounds with or without an added silane coupling agent, and the filler–rubber interaction was quantitatively calculated using vulcanizate structure analysis. The increased epoxide content, when the silane coupling agent was not used, improved silica dispersion, abrasion resistance, fuel efficiency, and wet grip. Once a basic level of silica dispersion was secured by using the silane coupling agent, both the abrasion resistance and wet grip improved with increasing epoxide content. Furthermore, the silane coupling agent could be partially replaced by ENR due to the high filler–rubber interaction between the ENR and silica. Therefore, epoxidation shows potential for resolving the issues associated with poor coupling reactions and abrasion resistance in silica-filled NR compounds.</jats:p
