1,149 research outputs found

    Electron pairing: from metastable electron pair to bipolaron

    Full text link
    Starting from the shell structure in atoms and the significant correlation within electron pairs, we distinguish the exchange-correlation effects between two electrons of opposite spins occupying the same orbital from the average correlation among many electrons in a crystal. In the periodic potential of the crystal with lattice constant larger than the effective Bohr radius of the valence electrons, these correlated electron pairs can form a metastable energy band above the corresponding single-electron band separated by an energy gap. In order to determine if these metastable electron pairs can be stabilized, we calculate the many-electron exchange-correlation renormalization and the polaron correction to the two-band system with single electrons and electron pairs. We find that the electron-phonon interaction is essential to counterbalance the Coulomb repulsion and to stabilize the electron pairs. The interplay of the electron-electron and electron-phonon interactions, manifested in the exchange-correlation energies, polaron effects, and screening, is responsible for the formation of electron pairs (bipolarons) that are located on the Fermi surface of the single-electron band.Comment: 17 pages, 6 figures, Journal of Physics Communications 201

    Melting temperature of screened Wigner crystal on helium films by molecular dynamics

    Full text link
    Using molecular dynamics (MD) simulation, we have calculated the melting temperature of two-dimensional electron systems on 240 240\AA-500 500\AA helium films supported by substrates of dielectric constants ϵs=2.211.9 \epsilon_{s}=2.2-11.9 at areal densities nn varying from 3×109 3\times 10^{9} cm2^{-2} to 1.3×1010 1.3\times 10^{10} cm2^{-2}. Our results are in good agreement with the available theoretical and experimental results.Comment: 4 pages and 4 figure

    Supersymmetric and Shape-Invariant Generalization for Nonresonant and Intensity-Dependent Jaynes-Cummings Systems

    Get PDF
    A class of shape-invariant bound-state problems which represent transition in a two-level system introduced earlier are generalized to include arbitrary energy splittings between the two levels as well as intensity-dependent interactions. We show that the couple-channel Hamiltonians obtained correspond to the generalizations of the nonresonant and intensity-dependent nonresonant Jaynes-Cummings Hamiltonians, widely used in quantized theories of laser. In this general context, we determine the eigenstates, eigenvalues, the time evolution matrix and the population inversion matrix factor.Comment: A combined version of quant-ph/0005045 and quant-ph/0005046. 24 pages, LATE

    Configurational entropy of Wigner crystals

    Get PDF
    We present a theoretical study of classical Wigner crystals in two- and three-dimensional isotropic parabolic traps aiming at understanding and quantifying the configurational uncertainty due to the presence of multiple stable configurations. Strongly interacting systems of classical charged particles confined in traps are known to form regular structures. The number of distinct arrangements grows very rapidly with the number of particles, many of these arrangements have quite low occurrence probabilities and often the lowest-energy structure is not the most probable one. We perform numerical simulations on systems containing up to 100 particles interacting through Coulomb and Yukawa forces, and show that the total number of metastable configurations is not a well defined and representative quantity. Instead, we propose to rely on the configurational entropy as a robust and objective measure of uncertainty. The configurational entropy can be understood as the logarithm of the effective number of states; it is insensitive to the presence of overlooked low-probability states and can be reliably determined even within a limited time of a simulation or an experiment.Comment: 12 pages, 8 figures. This is an author-created, un-copyedited version of an article accepted for publication in J. Phys.: Condens. Matter. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The definitive publisher-authenticated version is available online at 10.1088/0953-8984/23/7/075302.

    Evolution of physical processes in models of population dynamics

    Get PDF
    Neste texto apresentamos e discutimos um breve panorama cronológico para a dinâmica de populações, observando o ponto de vista dos autores, bem como a evolução dos principais modelos matemáticos e sua importância histórica. Com foco na predição temporal e espacial da variação do número de indivíduos de uma população, analisamos como modelar matematicamente os processos físicos como crescimento, interação, difusão e fluxo de um coletivo de indivíduos. Partimos do bem conhecido modelo de Fibonacci e discutimos como modelos que o sucederam, a saber, o modelo Malthusiano, Lotka-Volterra e Fisher-Kolmogorov, foram capazes de ampliar o entendimento do comportamento de uma população. Apresentamos, nesta linha temporal sinuosa, como as interações entre uma mesma espécie e entre espécies podem ser explicadas e modeladas. Mostramos como funciona o processo de extinção de uma espécie predadora, o fenômeno de difusão de um coletivo devido as mais diversas exigências espaciais, as migrações e invasões de territórios por meio de uma dinâmica convectiva nos modelos de dinâmica de uma população e também como a não-localidade nas interações e no crescimento ampliam enormemente nosso entendimento sobre os padrões na natureza.In this paper we present and discuss a brief overview chronological for the population dynamics, observing the point of view of the authors, as well as the evolution of the main mathematical models and its historical importance. Focusing on temporal and spatial prediction of the variation in the number of individuals in a population, we analyze how to mathematically model the physical processes such as growth, interaction, dissemination and flow of a collective of individuals. We start from the well-known model of Fibonacci and discussed how models who succeeded him, namely the Malthusian model, Lotka-Volterra and Fisher-Kolmogorov were able to expand the understanding of the behavior of a population. Here, in this winding timeline as the interactions between species and between species can be explained and modeled. We show how the process of extinguishing a predatory species works, the diffusion phenomenon of a collective because the most diverse space requirements, migration and invasions of territories by means of convective momentum in dynamic models of a population as well as non-locality in interactions and growth greatly expand our understanding of the patterns in nature

    Algebraic Nature of Shape-Invariant and Self-Similar Potentials

    Get PDF
    Self-similar potentials generalize the concept of shape-invariance which was originally introduced to explore exactly-solvable potentials in quantum mechanics. In this article it is shown that previously introduced algebraic approach to the latter can be generalized to the former. The infinite Lie algebras introduced in this context are shown to be closely related to the q-algebras. The associated coherent states are investigated.Comment: 8 page

    Generalized Ladder Operators for Shape-invariant Potentials

    Full text link
    A general form for ladder operators is used to construct a method to solve bound-state Schr\"odinger equations. The characteristics of supersymmetry and shape invariance of the system are the start point of the approach. To show the elegance and the utility of the method we use it to obtain energy spectra and eigenfunctions for the one-dimensional harmonic oscillator and Morse potentials and for the radial harmonic oscillator and Coulomb potentials.Comment: in Revte

    Produção de leite de cabra em pasto de capim-tanzânia manejado sob lotação rotativa.

    Get PDF
    O experimento foi conduzido para quantificar o potencial de produção de leite de cabra em pasto de capim-tanzânia submetido a diferentes manejos. Os manejos testados foram: intensivo (altura residual de 30 cm e 600kg de N ha-1 ano-1), moderado (altura residual de 45cm e 300kg de N ha-1 ano-1), leve (altura residual de 45cm sem adubação) e convencional (altura residual de 30 cm e 0kg de N ha-1 ano-1). Utilizaram-se caprinos leiteiros da raça Anglo Nubiana. O pasto foi manejado sob lotação rotativa com taxa de lotação variável, nas épocas: chuvosa e seca. Durante o período seco o pasto foi irrigado. Foram determinadas as produções individuais de leite, taxa de lotação e a duração da lactação para determinar a produtividade. No manejo intensivo foram registradas as maiores produtividades tanto na época chuvosa (3540 kg leite por ha em 120 dias de lactação), quanto na época seca (15.902 kg leite por ha em 240 dias de lactação). Dos manejos sem adubação, o manejo leve apresentou melhor desempenho (mais de 6.000 kg de leite na época seca), em função da alta produção individual (1kg por cabra), apesar da baixa taxa de lotação (16 cabras por hectare). O manejo intensivo do pasto permitiu alta produtividade tanta na época das águas quanto na época seca, sendo uma opção para modelos de produção mais tecnificados. O manejo leve mostrou resultados positivos do ponto de vista do uso sustentável da área, podendo ser indicado para modelos de produção com menor inversão de capital
    corecore