76 research outputs found

    Stochastic locality and master-field simulations of very large lattices

    Full text link
    In lattice QCD and other field theories with a mass gap, the field variables in distant regions of a physically large lattice are only weakly correlated. Accurate stochastic estimates of the expectation values of local observables may therefore be obtained from a single representative field. Such master-field simulations potentially allow very large lattices to be simulated, but require various conceptual and technical issues to be addressed. In this talk, an introduction to the subject is provided and some encouraging results of master-field simulations of the SU(3) gauge theory are reported.Comment: Talk given at the 35th International Symposium on Lattice Field Theory, 18-24 June 2017, Granada, Spain; LaTeX source with 6 figure

    Effects of cooling on muscle function and duration of stance phase during gait

    Full text link

    Metadynamics surfing on topology barriers: the CP N 121 case

    Get PDF
    As one approaches the continuum limit, QCD systems, investigated via numerical simulations, remain trapped in sectors of field space with fixed topological charge. As a consequence the numerical studies of physical quantities may give biased results. The same is true in the case of two dimensional CPN 121 models. In this paper we show that metadynamics, when used to simulate CPN 121, allows to address efficiently this problem. By studying CP20 we show that we are able to reconstruct the free energy of the topological charge F (Q) and compute the topological susceptibility as a function of the coupling and of the volume. This is a very important physical quantity in studies of the dynamics of the \u3b8 vacuum and of the axion. This method can in principle be extended to QCD applications. \ua9 2016, The Author(s)

    The anomalous magnetic moment of the muon in the Standard Model:an update

    Get PDF
    We present the current Standard Model (SM) prediction for the muon anomalous magnetic moment, aμ, updating the first White Paper (WP20) [1]. The pure QED and electroweak contributions have been further consolidated, while hadronic contributions continue to be responsible for the bulk of the uncertainty of the SM prediction. Significant progress has been achieved in the hadronic light-by-light scattering contribution using both the data-driven dispersive approach as well as lattice-QCD calculations, leading to a reduction of the uncertainty by almost a factor of two. The most important development since WP20 is the change in the estimate of the leading-order hadronic-vacuum-polarization (LO HVP) contribution. A new measurement of the e+e−→π+π− cross section by CMD-3 has increased the tensions among data-driven dispersive evaluations of the LO HVP contribution to a level that makes it impossible to combine the results in a meaningful way. At the same time, the attainable precision of lattice-QCD calculations has increased substantially and allows for a consolidated lattice-QCD average of the LO HVP contribution with a precision of about 0.9%. Adopting the latter in this update has resulted in a major upward shift of the total SM prediction, which now reads aμSM=116592033(62)×10−11 (530ppb). When compared against the current experimental average based on the E821 experiment and runs 1–6 of E989 at Fermilab, one finds aμexp−aμSM=38(63)×10−11, which implies that there is no tension between the SM and experiment at the current level of precision. The final precision of E989 (127 ppb) is the target of future efforts by the Theory Initiative. The resolution of the tensions among data-driven dispersive evaluations of the LO HVP contribution will be a key element in this endeavor.</p

    Possible predictors of involuntary weight loss in patients with Alzheimer's disease

    Get PDF
    Loss in body mass (∆BM) is a common feature in patients with Alzheimer's disease (AD). However, the etiology of this phenomenon is unclear. The aim of this cohort study was to observe possible ∆BM in AD patients following a standard institutionalized diet. Secondary objective was to identify possible predictors of ∆BM. To this end, 85 AD patients (age: 76±4 yrs; stature: 165±3 cm; BM: 61.6±7.4 kg; mean±standard deviation) and 86 controls (CTRL; age: 78±5 yrs; stature: 166±4 cm; BM: 61.7±6.4 kg) were followed during one year of standard institutionalized diet (~1800 kcal/24h). BM, daily energy expenditure, albuminemia, number of medications taken, and cortisolism, were recorded PRE and POST the observation period. Potential predictors of ∆BM in women (W) and men (M) with AD were calculated with a forward stepwise regression model. After one year of standard institutionalized diet, BM decreased significantly in AD (-2.5 kg; p < 0.01), while in CTRL remained unchanged (-0.4 kg; p = 0.8). AD patients and CTRL exhibited similar levels of daily energy expenditure (~1625 kcal/24h). The combination of three factors, number of medications taken, albuminemia, and cortisolism, predicted ∆BM in W with AD. At contrary, the best predictor of ∆BM in M with AD was the cortisolism. Despite a controlled energy intake and similar energy expenditure, both W and M with AD suffered of ∆BM. Therefore, controlled diet did not prevent this phenomenon. The assessments of these variables may predict W and M with AD at risk of weight loss

    The anomalous magnetic moment of the muon in the Standard Model

    Get PDF
    194 pages, 103 figures, bib files for the citation references are available from: https://muon-gm2-theory.illinois.eduWe review the present status of the Standard Model calculation of the anomalous magnetic moment of the muon. This is performed in a perturbative expansion in the fine-structure constant α\alpha and is broken down into pure QED, electroweak, and hadronic contributions. The pure QED contribution is by far the largest and has been evaluated up to and including O(α5)\mathcal{O}(\alpha^5) with negligible numerical uncertainty. The electroweak contribution is suppressed by (mμ/MW)2(m_\mu/M_W)^2 and only shows up at the level of the seventh significant digit. It has been evaluated up to two loops and is known to better than one percent. Hadronic contributions are the most difficult to calculate and are responsible for almost all of the theoretical uncertainty. The leading hadronic contribution appears at O(α2)\mathcal{O}(\alpha^2) and is due to hadronic vacuum polarization, whereas at O(α3)\mathcal{O}(\alpha^3) the hadronic light-by-light scattering contribution appears. Given the low characteristic scale of this observable, these contributions have to be calculated with nonperturbative methods, in particular, dispersion relations and the lattice approach to QCD. The largest part of this review is dedicated to a detailed account of recent efforts to improve the calculation of these two contributions with either a data-driven, dispersive approach, or a first-principle, lattice-QCD approach. The final result reads aμSM=116591810(43)×1011a_\mu^\text{SM}=116\,591\,810(43)\times 10^{-11} and is smaller than the Brookhaven measurement by 3.7σ\sigma. The experimental uncertainty will soon be reduced by up to a factor four by the new experiment currently running at Fermilab, and also by the future J-PARC experiment. This and the prospects to further reduce the theoretical uncertainty in the near future-which are also discussed here-make this quantity one of the most promising places to look for evidence of new physics

    Effects of acute passive stretching on ventilatory pattern during prolonged cycle exercise

    Full text link
    Passive stretching, by inducing mechanical and chemical stimuli that activate receptors on the terminal end of group III and IV nerve fibres located within joints and muscle, may increase ventilation (VE) during exercise. The aim of the study was to assess the effects of an acute bout of passive stretching on the ventilatory pattern. Maximum oxygen uptake was determined in nine participants who then performed a sustained cycle exercise of high intensity (constant workload of 85% of the minimum power to elicit maximum oxygen uptake,W 85) with and without previous stretching. During the tests metabolic and respiratory parameters were recorded breath-by-breath. Time to exhaustion in the W 85 test was significantly shorter (-29%) with stretching. During the first 12 min of exercise the following parameters were significantly higher with stretching than without: oxygen uptake (+4%), ventilation (+9%), respiratory muscle power (+16%) and respiratory muscle oxygen uptake (+13%; P < 0.05). The increase in ventilation was accompanied mainly by an increase in respiratory frequency rather than in tidal volume. However, after stretching the metabolic rate also increased. Thus, the higher ventilation might have been a consequence of both higher muscle afferent activation and higher metabolic rate. Stretching alters the respiratory and metabolic response to exercise, but its effects on ventilation need further investigation

    Electromechanical delay differences in triceps surae muscles

    No full text
    Raw dataTHIS DATASET IS ARCHIVED AT DANS/EASY, BUT NOT ACCESSIBLE HERE. TO VIEW A LIST OF FILES AND ACCESS THE FILES IN THIS DATASET CLICK ON THE DOI-LINK ABOV
    corecore