128 research outputs found

    On the long-range correlations in hadron-nucleus collisions

    Get PDF
    Long-range correlations between multiplicities in different rapidity windows in hadron-nucleus collisions are analyzed. After recalling the standard results in the probabilistic model, we study them in the framework of perturbative QCD. Considering interacting BFKL pomerons in the form of fan diagrams coupled to a dilute projectile, analytic estimates are done for very large rapidities. The correlation strength results weakly depending on energy and centrality or nuclear size, and generically greater than unity. Finally, we turn to the Color Glass Condensate framework. For a saturated projectile and considering the most feasible experimental situation of forward and backward rapidity windows symmetric around the center-of-mass, the resulting correlation strength turns out to be larger than unity and shows a non-monotonic behavior with increasing energy, first increasing and then decreasing to a limiting value. Its behavior with increasing centrality or nuclear size depends on the considered rapidity windows.Comment: 17 pages, LaTeX, 6 eps figures included using graphicx; v2: error in the CGC formula corrected, conclusions of the corresponding section changed accordingl

    Exclusive photoproduction of J/ψJ/\psi in proton-proton and proton-antiproton scattering

    Full text link
    Protons and antiprotons at collider energies are a source of high energy Weizs\"acker--Williams photons. This may open a possibility to study exclusive photoproduction of heavy vector mesons at energies much larger than possible at the HERA accelerator. Here we present a detailed investigation of the exclusive J/ψJ/\psi photoproduction in proton-proton (RHIC, LHC) and proton-antiproton (Tevatron) collisions. We calculate several differential distributions in t1,t2,y,ϕt_1, t_2, y, \phi, as well as transverse momentum distributions of J/ΨJ/\Psi's. We discuss correlations in the azimuthal angle between outgoing protons or proton and antiproton as well as in the (t1,t2t_1, t_2) space. Differently from electroproduction experiments, here both colliding beam particles can be a source of photons, and we find large interference terms in azimuthal angle distributions in a broad range of rapidities of the produced meson. We also include the spin--flip parts in the electromagnetic vertices. We discuss the effect of absorptive corrections on various distributions. Interestingly, absorption corrections induce a charge asymmetry in rapidity distributions, and are larger for ppp p reactions than for the ppˉp \bar p case. The reaction considered here constitutes an important nonreduceable background in recently proposed searches for odderon exchange.Comment: 22 pages, 20 figures; dedicated to Kolya Nikolaev on the occasion of his 60th birthday; 4 figures and discussion adde

    Breakdown of QCD factorization at large Feynman x

    Full text link
    Recent measurements by the BRAHMS collaboration of high-pT hadron production at forward rapidities at RHIC found the relative production rate(d-Au)/(p-p) to be suppressed, rather than enhanced. Examining other known reactions (forward production of light hadrons, the Drell-Yan process, heavy flavor production, etc.), one notes that all of these display a similar property, namely, their cross sections in nuclei are suppressed at large xF. Since this is the region where x2 is minimal, it is tempting to interpret this as a manifestation of coherence, or of a color glass condensate, whereas it is actually a simple consequence of energy conservation and takes place even at low energies. We demonstrate that in all these reactions there is a common suppression mechanism that can be viewed, alternatively, as a consequence of a reduced survival probability for large rapidity gap processes in nuclei, Sudakov suppression, an enhanced resolution of higher Fock states by nuclei, or an effective energy loss that rises linearly with energy. Our calculations agree with data.Comment: 12 pages Latex, 8 figures (only technical corrections in the replacement

    Nucleon Resonances and Quark Structure

    Full text link
    A pedagogical review of the past 50 years of study of resonances, leading to our understanding of the quark content of baryons and mesons. The level of this review is intended for undergraduates or first-year graduate students. Topics covered include: the quark structure of the proton as revealed through deep inelastic scattering; structure functions and what they reveal about proton structure; and prospects for further studies with new and upgraded facilities, particularly a proposed electron-ion collider.Comment: 21 pages, 15 figure

    On The Pomeron at Large 't Hooft Coupling

    Full text link
    We begin the process of unitarizing the Pomeron at large 't Hooft coupling. We do so first in the conformal regime, which applies to good accuracy to a number of real and toy problems in QCD. We rewrite the conformal Pomeron in the JJ-plane and transverse position space, and then work out the eikonal approximation to multiple Pomeron exchange. This is done in the context of a more general treatment of the complex JJ-plane and the geometric consequences of conformal invariance. The methods required are direct generalizations of our previous work on single Pomeron exchange and on multiple graviton exchange in AdS space, and should form a starting point for other investigations. We consider unitarity and saturation in the conformal regime, noting elastic and absorptive effects, and exploring where different processes dominate. Our methods extend to confining theories and we briefly consider the Pomeron kernel in this context. Though there is important model dependence that requires detailed consideration, the eikonal approximation indicates that the Froissart bound is generically both satisfied and saturated.Comment: 63 pages, 7 figures; published version: references updated and several typos correcte

    Collective behavior in nuclear interactions and shower development

    Full text link
    The mechanism of hadronic interactions at very high energies is still unclear. Available accelerator data constrain weakly the forward rapidity region which determines the development of atmospheric showers. This ignorance is one of the main sources of uncertainty in the determination of the energy and composition of the primary in hadron-induced atmospheric showers. In this paper we examine the effect on the shower development of two kinds of collective effects in high-energy hadronic interactions which modify the production of secondary particles. The first mechanism, modeled as string fusion, affects strongly the central rapidity region but only slightly the forward region and is shown to have very little effect on the shower development. The second mechanism implies a very strong stopping; it affects modestly the profile of shower maximum but broadens considerably the number distribution of muons at ground. For the latter mechanism, the development of air showers is faster mimicking a heavier projectile. On the other hand, the number of muons at ground is lowered, resembling a shower generated by a lighter primary.Comment: 17 pages, 10 figure

    Scanning the Quark-Gluon Plasma with Charmonium

    Full text link
    We suggest the variation of charmonium suppression with Feynman x_F in heavy ion collisions as a novel and sensitive probe for the properties of the matter created in such reactions. In contrast to the proton-nucleus case where nuclear suppression is weakest at small x_F, final state interactions with the comoving matter create a minimum at x_F=0, which is especially deep and narrow if a quark-gluon plasma is formed. While a particularly strong effect is predicted at SPS, at the higher RHIC energy it overlaps with the expected sharp variation with x_F of nuclear effects and needs comparison with proton-nucleus data. If thermal enhancement of J/\Psi production takes over at the energies of RHIC and LHC, it will form an easily identified peak, rather than dip in x_F dependence. We predict a steep dependence on centrality and suggest that this new probe is complementary to the dependence on transverse energy, and is more sensitive to a scenario of final state interactions.Comment: 5 pages including 3 figures. Stylistic and clarifying corrections are mad

    Quenching of Leading Jets and Particles: the p_t Dependent Landau-Pomeranchuk-Migdal effect from Nonlinear k_t Factorization

    Full text link
    We report the first derivation of the Landau-Pomeranchuk-Migdal effect for leading jets at fixed values of the transverse momentum p_t in the beam fragmentation region of hadron-nucleus collisions from RHIC (Relativistic Heavy Ion Collider) to LHC (Large Hadron Collider). The major novelty of this work is a derivation of the missing virtual radiative pQCD correction to these processes - the real-emission radiative corrections are already available in the literature. We manifestly implement the unitarity relation, which in the simplest form requires that upon summing over the virtual and real-emission corrections the total number of scattered quarks must exactly equal unity. For the free-nucleon target, the leading jet spectrum is shown to satisfy the familiar linear Balitsky-Fadin-Kuraev-Lipatov leading log(1/x) (LL-1/x) evolution. For nuclear targets, the nonlinear k_t-factorization for the LL-1/x evolution of the leading jet sepctrum is shown to exactly match the equally nonlinear LL-1/x evolution of the collective nuclear glue - there emerges a unique linear k_t-factorization relation between the two nonlinear evolving nuclear observables. We argue that within the standard dilute uncorrelated nucleonic gas treatment of heavy nuclei, in the finite energy range from RHIC to LHC, the leading jet spectrum can be evolved in the LL-1/x Balitsky-Kovchegov approximation. We comment on the extension of these results to, and their possible reggeon field theory interpretation for, mid-rapidity jets at LHC.Comment: 36 pages, 8 eps figs, revised, discussion on reggeon interpretation and refs. adde

    Hard Parton Rescatterings and Minijets in Nuclear Collisions at LHC

    Get PDF
    The average number of minijets and the corresponding transverse energy produced in heavy ion collisions are evaluated by including explicitly semi-hard parton rescatterings in the dynamics of the interaction. At the LHC semi-hard rescatterings have a sizable effect on global characteristics of the typical inelastic event. An interesting feature is that the dependence on the cutoff which separates soft and hard parton interactions becomes less critical after taking rescatterings into account.Comment: 14 pages, 3 figures. Enlarged discussion in sect.1 and 4; 1 figure added. To be published in Phys.Rev.

    Unifying approach to hard diffraction

    Get PDF
    We find a consistency between two different approaches of hard diffraction, namely the QCD dipole model and the Soft Colour Interaction approach. A theoretical interpretation in terms of S-Matrix and perturbative QCD properties in the small xBjx_{Bj} regime is proposed.Comment: 4pages, 1 figure, letter submitted for publicatio
    corecore