215 research outputs found
Neonatal brain MRI: how reliable is the radiologist’s eye?
International audienceAbstractIntroductionWhite matter (WM) analysis in neonatal brain magnetic resonance imaging (MRI) is challenging, as demonstrated by the issue of diffuse excessive high signal intensity (DEHSI). We evaluated the reliability of the radiologist'eye in this context.MethodsThree experienced observers graded the WM signal intensity on axial T2-weighted 1.5T images from 60 different premature newborns on 2 occasions 4 weeks apart with a semi-quantitative classification under identical viewing conditions.ResultsThe intra- and inter-observer correlation coefficients were fair to moderate (Fleiss’kappa between 0.21 and 0.60). ConclusionThis is a serious limitation of which we need to be aware, as it can lead to contradictory conclusions in the challenging context of term-equivalent age brain MRI in premature infants. These results highlight the need for a semiautomatic tool to help in objectively analyzing MRI signal intensity in the neonatal brain
Progrès récents de l'Imagerie par Résonance Magnétique (IRM) chez le nouveau-né. Recent advances in newborn MRI
International audienceAbstractThe accurate morphological exploration of the brain is a major challenge in neonatology that advances in magnetic resonance imaging (MRI) can now provide. MRI is the gold standard if an hypoxic ischemic pathology is suspected in a full term neonate. In prematures, the specific role of MRI remains to be defined, secondary to US in any case. We present a state of the art of hardware and software technical developments in MRI. The increase in magnetic field strength (3 tesla) and the emergence of new MRI sequences provide access to new information. They both have positive and negative consequences on the daily clinical data acquisition use. The semiology of brain imaging in full term newborns and prematures is more extensive and complex and thereby more difficult to interpret. The segmentation of different brain structures in the newborn, even very premature, is now available. It is now possible to dissociate the cortex and basal ganglia from the cerebral white matter, to calculate the volume of anatomical structures, which improves the morphometric quantification and the understanding of the normal and abnormal brain development. MRI is a powerful tool to analyze the neonatal brain. The relevance of the diagnostic contribution requires an adaptation of the parameters of the sequences to acquire and of the image processing methods.RésuméL’exploration morphologique fine du cerveau est un enjeu majeur en néonatalogie que les avancées de l’imagerie par résonance magnétique (IRM) permettent actuellement. L’IRM est l’examen de choix devant une suspicion de pathologie anoxo-ischémique à terme. Chez le prématuré, la place précise de l’IRM reste à définir, toujours en seconde intention après l’échographie transfontanellaire (ETF). Nous dressons un panorama des évolutions techniques récentes matérielles et logicielles, en IRM. L’augmentation de l’intensité des champs magnétiques (3 teslas) et l’apparition de nouvelles séquences donnent accès à de nouvelles informations. Elles ont des conséquences positives et négatives sur l’acquisition des données en utilisation clinique quotidienne. La sémiologie de l’imagerie cérébrale du nouveau-né et du prématuré est désormais plus riche, plus complexe et donc d’interprétation plus difficile. La segmentation des différentes structures cérébrales devient accessible chez le nouveau-né, même grand prématuré. Il est aujourd’hui possible de dissocier le cortex et les noyaux gris de la substance blanche cérébrale, de calculer des volumes de structures anatomiques, ce qui améliore la quantification morphométrique et la compréhension du développement cérébral normal et pathologique. L’IRM est un outil inégalable et puissant pour l’analyse du cerveau du nouveau-né, dont la pertinence de l’apport diagnostique requiert une adaptation des paramètres des séquences à acquérir et des méthodes de traitement d’images
Throwing the baby out with the bath water — response to the Swedish Agency for Health Technology Assessment and Assessment of Social Services (SBU) report on traumatic shaking
Pineal cysts in children
Abstract
Objective
To describe the prevalence and characteristics of pineal cysts found on MRI in children.
Methods
This is a retrospective monocentric study of all brain magnetic resonance imaging (MRI) examinations performed under the same technical conditions for checking the idiopathic nature of short stature (ISS group, n = 116) and for the investigation of central precocious puberty (CPP) over a 3-year period (n = 56). Dimensions, wall and septal thickness, number of locules, signal intensity, and the presence of a solid component were analysed. Ten of 19 cysts were re-evaluated (follow-up interval 4–28 months). The prevalence of the pineal cysts was compared between the two groups using χ2 and Fisher’s exact tests, and a significance threshold of p < 0.05.
Results
The prevalence of cysts was comparable in the two groups, CPP (10.7%) and ISS (11.2%). Cyst characteristics were similar in the two groups and 74% had thin septations. None of the cysts changed on follow-up. None of the children with pineal cysts exhibited neurological signs.
Conclusion
Benign pineal cysts are a common finding in young children. High-resolution MRI demonstrates that these cysts are often septated. This pattern is a normal variant and does not require follow-up MR imaging or IV contrast media.
</jats:sec
E.U. paediatric MOG consortium consensus: Part 2 - Neuroimaging features of paediatric myelin oligodendrocyte glycoprotein antibody-associated disorders.
Imaging plays a crucial role in differentiating the spectrum of paediatric acquired demyelinating syndromes (ADS), which apart from myelin oligodendrocyte glycoprotein antibody associated disorders (MOGAD) includes paediatric multiple sclerosis (MS), aquaporin-4 antibody neuromyelitis optica spectrum disorders (NMOSD) and unclassified patients with both monophasic and relapsing ADS. In contrast to the imaging characteristics of children with MS, children with MOGAD present with diverse imaging patterns which correlate with the main demyelinating phenotypes as well as age at presentation. In this review we describe the common neuroradiological features of children with MOGAD such as acute disseminated encephalomyelitis, optic neuritis, transverse myelitis, AQP4 negative NMOSD. In addition, we report newly recognized presentations also associated with MOG-ab such as the 'leukodystophy-like' phenotype and autoimmune encephalitis with predominant involvement of cortical and deep grey matter structures. We further delineate the features, which may help to distinguish MOGAD from other ADS and discuss the future role of MR-imaging in regards to treatment decisions and prognosis in children with MOGAD. Finally, we propose an MRI protocol for routine examination and discuss new imaging techniques, which may help to better understand the neurobiology of MOGAD
Congenital anterolateral tibial bowing and polydactyly: a case report
Congenital anterolateral bowing of the tibia is a rare deformity that may lead to pseudarthrosis and risk of fracture. This is commonly associated with neurofibromatosis type 1. In this report, we describe a 15-month old male with congenital anterolateral bowing of the right tibia and associated hallux duplication. This is a distinct entity with a generally favourable prognosis that should not be confused with other conditions such as neurofibromatosis type 1. Previously published cases are reviewed
European Society of Paediatric Radiology (ESPR) Child Abuse Taskforce Committee: a response to Miller et al.
E.U. paediatric MOG consortium consensus: Part 1 - Classification of clinical phenotypes of paediatric myelin oligodendrocyte glycoprotein antibody-associated disorders
Over the past few years, increasing interest in the role of autoantibodies against myelin oligodendrocyte glycoprotein (MOG-abs) as a new candidate biomarker in demyelinating central nervous system diseases has arisen. MOG-abs have now consistently been identified in a variety of demyelinating syndromes, with a predominance in paediatric patients. The clinical spectrum of these MOG-ab-associated disorders (MOGAD) is still expanding and differs between paediatric and adult patients. This first part of the Paediatric European Collaborative Consensus emphasises the diversity in clinical phenotypes associated with MOG-abs in paediatric patients and discusses these associated clinical phenotypes in detail. Typical MOGAD presentations consist of demyelinating syndromes, including acute disseminated encephalomyelitis (ADEM) in younger, and optic neuritis (ON) and/or transverse myelitis (TM) in older children. A proportion of patients experience a relapsing disease course, presenting as ADEM followed by one or multiple episode(s) of ON (ADEM-ON), multiphasic disseminated encephalomyelitis (MDEM), relapsing ON (RON) or relapsing neuromyelitis optica spectrum disorders (NMOSD)-like syndromes. More recently, the disease spectrum has been expanded with clinical and radiological phenotypes including encephalitis-like, leukodystrophy-like, and other non-classifiable presentations. This review concludes with recommendations following expert consensus on serologic testing for MOG-abs in paediatric patients, the presence of which has consequences for long-term monitoring, relapse risk, treatments, and for counselling of patient and families. Furthermore, we propose a clinical classification of paediatric MOGAD with clinical definitions and key features. These are operational and need to be tested, however essential for future paediatric MOGAD studies
E.U. paediatric MOG consortium consensus: Part 4 - Outcome of paediatric myelin oligodendrocyte glycoprotein antibody-associated disorders
There is increasing knowledge on the role of antibodies against myelin oligodendrocyte glycoprotein (MOG-abs) in acquired demyelinating syndromes and autoimmune encephalitis in children. Better understanding and prediction of outcome is essential to guide treatment protocol decisions. Therefore, this part of the Paediatric European Collaborative Consensus provides an oversight of existing knowledge of clinical outcome assessment in paediatric MOG-ab-associated disorders (MOGAD). The large heterogeneity in disease phenotype, disease course, treatment and follow-up protocols is a major obstacle for reliable prediction of outcome. However, the clinical phenotype of MOGAD appears to be the main determinant of outcome. Patients with a transverse myelitis phenotype in particular are at high risk of accruing neurological disability (motor and autonomic), which is frequently severe. In contrast, having a single episode of optic neuritis any time during disease course is broadly associated with a lower risk of persistent disability. Furthermore, MOG-ab-associated optic neuritis often results in good functional visual recovery, although retinal axonal loss may be severe. The field of cognitive and behavioural outcome and epilepsy following demyelinating episodes has not been extensively explored, but in recent studies acute disseminated encephalomyelitis (-like) phenotype in the young children was associated with cognitive problems and epilepsy in long-term follow-up. In conclusion, main domains of importance in determining clinical outcome in paediatric MOGAD are visual, motor, autonomic and cognitive function. A standardised evaluation of these outcome domains in all children is of importance to allow adequate rehabilitation and follow-up
Benign enlargement of the subarachnoid spaces and subdural collections—when to evaluate for abuse
In infants without a history of trauma, subdural haemorrhages should raise the concern for an abusive head injury, particularly when they are associated with bridging vein clotting/rupture or with septations. However, non-haemorrhagic, fluid-appearing subdural collections (also called hygromas) may also be the result of abuse. Subdural collections have also been uncommonly observed in patients with benign enlargement of the subarachnoid spaces (BESS) and a few large-scale studies accurately investigate the incidence and the significance. Currently, there is a wide variation of practices in children with BESS and subdural collections. Due to the social risks associated with abuse evaluation and the perceived risk of radiation exposure, there might be a reluctance to fully evaluate these children in some centres. The diagnosis of physical abuse cannot be substantiated nor safely excluded in infants with BESS and subdural collection(s), without investigation for concomitant traumatic findings. The exact prevalence of occult injuries and abuse in these infants is unknown. In macrocephalic infants with subdural collections and imaging features of BESS, thorough investigations for abuse are warranted and paediatricians should consider performing full skeletal surveys even when fundoscopy, social work consult, and detailed clinical evaluation are unremarkable
- …
