96 research outputs found

    Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection

    Get PDF
    The potential for ischemic preconditioning to reduce infarct size was first recognized more than 30 years ago. Despite extension of the concept to ischemic postconditioning and remote ischemic conditioning and literally thousands of experimental studies in various species and models which identified a multitude of signaling steps, so far there is only a single and very recent study, which has unequivocally translated cardioprotection to improved clinical outcome as the primary endpoint in patients. Many potential reasons for this disappointing lack of clinical translation of cardioprotection have been proposed, including lack of rigor and reproducibility in preclinical studies, and poor design and conduct of clinical trials. There is, however, universal agreement that robust preclinical data are a mandatory prerequisite to initiate a meaningful clinical trial. In this context, it is disconcerting that the CAESAR consortium (Consortium for preclinicAl assESsment of cARdioprotective therapies) in a highly standardized multi-center approach of preclinical studies identified only ischemic preconditioning, but not nitrite or sildenafil, when given as adjunct to reperfusion, to reduce infarct size. However, ischemic preconditioning—due to its very nature—can only be used in elective interventions, and not in acute myocardial infarction. Therefore, better strategies to identify robust and reproducible strategies of cardioprotection, which can subsequently be tested in clinical trials must be developed. We refer to the recent guidelines for experimental models of myocardial ischemia and infarction, and aim to provide now practical guidelines to ensure rigor and reproducibility in preclinical and clinical studies on cardioprotection. In line with the above guideline, we define rigor as standardized state-of-the-art design, conduct and reporting of a study, which is then a prerequisite for reproducibility, i.e. replication of results by another laboratory when performing exactly the same experiment

    Response of isolated adult canine cardiac myocytes to prolonged hypoxia and reoxygenation

    Full text link
    Isolated adult canine ventricular myocytes incubated in the absence of glucose with the respiratory inhibitor rotenone retained 67% of ATP (control, 26.0 +/- 0.9 nmol/mg protein) during 3-h incubation, yet phosphocreatine fell to 23% of initial content. Lactate production proceeded at a constant rate of 5 nmol.mg-1.min-1 in rotenone-treated glucose-free myocytes. A 36% decline in rod-shaped cells and an increase in percent 22Na permeation from 37% in aerobic cells (approximately 13 mM intracellular sodium) to 68% in rotenone-treated glucose-free myocytes paralleled the loss of ATP. Total exchangeable calcium was maintained at control aerobic levels. Exposure of canine cells to 3-h hypoxia in the absence of glucose followed by 5-min reoxygenation resulted in a 73% decrease in ATP, a rise in calcium from 3.3 +/- 0.2 to 6.6 +/- 1.6 nmol/mg, and an increase in 22Na permeation to 111%. Under these conditions the number of rod-shaped myocytes declined by 77%, with corresponding increases in viable contracted and hypercontracted myocytes. The response of canine myocytes to severe hypoxia and reaeration contrasts greatly to earlier studies using adult rat cardiac myocytes [see Hohl et al. Am. J. Physiol. 242 (Heart Circ. Physiol. 11): H1022-H1030, 1982]. Species differences with respect to basal metabolism, rates of ATP production and degradation, and regulation of cation movements are most likely responsible for the observed differences.</jats:p

    Effects of simulated ischemia and reperfusion on the sarcoplasmic reticulum of digitonin-lysed cardiomyocytes.

    Full text link
    ATP-dependent, inorganic phosphate-supported 45Ca2+ uptake by digitonin-lysed adult rat ventricular cardiomyocytes was used to evaluate the effects of simulated ischemia and reperfusion on the physically intact sarcoplasmic reticulum. Mitochondrial reactions were inhibited with rotenone and oligomycin. 45Ca2+ accumulation in the presence of the calcium efflux inhibitors, procaine (10 mM) and ruthenium red (30 microM), was used to characterize unidirectional uptake kinetics. A decrease in pH from 7.2 to 6.6 increased the [Ca2+] K0.5 from 0.5 to 2.0 microM and reduced the apparent Vmax by 28%. In the absence of procaine and ruthenium red, at a free [Mg2+] of 0.5 mM, maximum net uptake occurred at pCa 6.2 when pH was 7.2 and at pCa 6.0 when pH was 6.6. At lower pCa, net Ca2+ accumulation declined. Increasing free [Mg2+] from 0.5 to 1 mM at pH 6.6 or to 2.5 mM at pH 7.2 increased net 45Ca2+ accumulation in the absence of procaine and ruthenium and shifted maximum uptake to pCa 5.6 and 6.0, respectively. Increases in cytosolic free [Mg2+] thought to occur during myocardial ischemia are therefore capable of inhibiting calcium efflux from the sarcoplasmic reticulum. Reducing [ATP] from 10 to 1 mM reduced maximum net 45Ca2+ uptake by 30% both in the presence and absence of efflux inhibitors. Preincubation of intact myocytes under conditions designed to simulate ischemia and reperfusion decreased 45Ca2+ uptake greater than or equal to 50%. The data indicate that myocardial ischemia and reperfusion can alter both Ca2+ accumulation and calcium release by the sarcoplasmic reticulum.</jats:p

    Muscle Cell Cultures from Human Heart

    Full text link
    corecore