293 research outputs found

    Dynamics and Structure of Three-Dimensional Trans-Alfvenic Jets. II. The Effect of Density and Winds

    Full text link
    Two three-dimensional magnetohydrodynamical simulations of strongly magnetized conical jets, one with a poloidal and one with a helical magnetic field, have been performed. In the poloidal simulation a significant sheath (wind) of magnetized moving material developed and partially stabilized the jet to helical twisting. The fundamental pinch mode was not similarly affected and emission knots developed in the poloidal simulation. Thus, astrophysical jets surrounded by outflowing winds could develop knotty structures along a straight jet triggered by pinching. Where helical twisting dominated the dynamics, magnetic field orientation along the line-of-sight could be organized by the toroidal flow field accompanying helical twisting. On astrophysical jets such structure could lead to a reversal of the direction of Faraday rotation in adjacent zones along a jet. Theoretical analysis showed that the different dynamical behavior of the two simulations could be entirely understood as a result of dependence on the velocity shear between jet and wind which must exceed a surface Alfven speed before the jet becomes unstable to helical and higher order modes of jet distortion.Comment: 25 pages, 15 figures, in press Astrophysical Journal (September

    3C454.3 reveals the structure and physics of its 'blazar zone'

    Full text link
    Recent multi-wavelength observations of 3C454.3, in particular during its giant outburst in 2005, put severe constraints on the location of the 'blazar zone', its dissipative nature, and high energy radiation mechanisms. As the optical, X-ray, and millimeter light-curves indicate, significant fraction of the jet energy must be released in the vicinity of the millimeter-photosphere, i.e. at distances where, due to the lateral expansion, the jet becomes transparent at millimeter wavelengths. We conclude that this region is located at ~10 parsecs, the distance coinciding with the location of the hot dust region. This location is consistent with the high amplitude variations observed on ~10 day time scale, provided the Lorentz factor of a jet is ~20. We argue that dissipation is driven by reconfinement shock and demonstrate that X-rays and gamma-rays are likely to be produced via inverse Compton scattering of near/mid IR photons emitted by the hot dust. We also infer that the largest gamma-to-synchrotron luminosity ratio ever recorded in this object - having taken place during its lowest luminosity states - can be simply due to weaker magnetic fields carried by a less powerful jet.Comment: 19 pages, 3 figures, accepted for publication in Ap

    Kink instabilities in jets from rotating magnetic fields

    Full text link
    We have performed 2.5D and 3D simulations of conical jets driven by the rotation of an ordered, large-scale magnetic field in a stratified atmosphere. The simulations cover about three orders of magnitude in distance to capture the centrifugal acceleration as well as the evolution past the Alfven surface. We find that the jets develop kink instabilities, the characteristics of which depend on the velocity profile imposed at the base of the flow. The instabilities are especially pronounced with a rigid rotation profile, which induces a shearless magnetic field. The jet's expansion appears to be limiting the growth of Alfven mode instabilities.Comment: 10 pages, 13 figures, accepted for publication in A&

    Structure and Stability of Keplerian MHD Jets

    Get PDF
    MHD jet equilibria that depend on source properties are obtained using a simplified model for stationary, axisymmetric and rotating magnetized outflows. The present rotation laws are more complex than previously considered and include a Keplerian disc. The ensuing jets have a dense, current-carrying central core surrounded by an outer collar with a return current. The intermediate part of the jet is almost current-free and is magnetically dominated. Most of the momentum is located around the axis in the dense core and this region is likely to dominate the dynamics of the jet. We address the linear stability and the non-linear development of instabilities for our models using both analytical and 2.5-D numerical simulation's. The instabilities seen in the simulations develop with a wavelength and growth time that are well matched by the stability analysis. The modes explored in this work may provide a natural explanation for knots observed in astrophysical jets.Comment: 35 pages, accepted by the Ap

    Waves and Instabilities in Accretion Disks: MHD Spectroscopic Analysis

    Get PDF
    A complete analytical and numerical treatment of all magnetohydrodynamic waves and instabilities for radially stratified, magnetized accretion disks is presented. The instabilities are a possible source of anomalous transport. While recovering results on known hydrodynamicand both weak- and strong-field magnetohydrodynamic perturbations, the full magnetohydrodynamic spectra for a realistic accretion disk model demonstrates a much richer variety of instabilities accessible to the plasma than previously realized. We show that both weakly and strongly magnetized accretion disks are prone to strong non-axisymmetric instabilities.The ability to characterize all waves arising in accretion disks holds great promise for magnetohydrodynamic spectroscopic analysis.Comment: FOM-Institute for plasma physics "Rijnhuizen", Nieuwegein, the Netherlands 12 pages, 3 figures, Accepted for publication in ApJ

    Cosine and Sine Operators Related with Orthogonal Polynomial Sets on the Intervall [-1,1]

    Full text link
    The quantization of phase is still an open problem. In the approach of Susskind and Glogower so called cosine and sine operators play a fundamental role. Their eigenstates in the Fock representation are related with the Chebyshev polynomials of the second kind. Here we introduce more general cosine and sine operators whose eigenfunctions in the Fock basis are related in a similar way with arbitrary orthogonal polynomial sets on the intervall [-1,1]. To each polynomial set defined in terms of a weight function there corresponds a pair of cosine and sine operators. Depending on the symmetry of the weight function we distinguish generalized or extended operators. Their eigenstates are used to define cosine and sine representations and probability distributions. We consider also the inverse arccosine and arcsine operators and use their eigenstates to define cosine-phase and sine-phase distributions, respectively. Specific, numerical and graphical results are given for the classical orthogonal polynomials and for particular Fock and coherent states.Comment: 1 tex-file (24 pages), 11 figure

    Bendings of radio jets in BL Lacertae objects I: EVN and MERLIN observations

    Get PDF
    Several blazars, and BL Lac objects in particular, show a misalignment between the jet orientation on parsec and kiloparsec scales. Some authors (i.e. Conway & Murphy, 1993) have attempted to explain this behaviour invoking helical jets for misalignment angles around 90\degr, showing how in this case there are interesting implications for the understanding of the medium into which the jet is expanding. By comparing sensitive VLA observations (Cassaro et al., 1999) with images available in the literature for the BL Lac objects from the 1-Jy Sample (Stickel et al., 1991), it is clear that there is a wide range of misalignments between the initial jet direction and the kpc-scale jet, when detected. We have carried out VLBI observations of these BL Lac objects, in order to investigate the spatial evolution of the radio jets from few tens to hundreds of mas, and to search for helical jets in this class of sources. We present here the first dataset obtained from EVN+MERLIN observations at 5 GHz for seven objects. From these observations we never have a clear detection of helical jets, we only have a possible signature of their presence in 2 objects. In only one of the sources with a misalignment angle around 90\degr the presence of helical jets can be ruled out. This implies that it is not possible to invoke helical jets to explain the morphology of all the sources showing a misalignment of about 90\degr between the parsec and the kiloparsec scale jets.Comment: 12 pages, 9 figures, latex, accepted by Astronomy & Astrophysic

    Ohm's Law for a Relativistic Pair Plasma

    Full text link
    We derive the fully relativistic Ohm's law for an electron-positron plasma. The absence of non-resistive terms in Ohm's law and the natural substitution of the 4-velocity for the velocity flux in the relativistic bulk plasma equations do not require the field gradient length scale to be much larger than the lepton inertial lengths, or the existence of a frame in which the distribution functions are isotropic.Comment: 12 pages, plain TeX, Phys. Rev. Lett. 71 3481 (1993
    corecore