293 research outputs found
Dynamics and Structure of Three-Dimensional Trans-Alfvenic Jets. II. The Effect of Density and Winds
Two three-dimensional magnetohydrodynamical simulations of strongly
magnetized conical jets, one with a poloidal and one with a helical magnetic
field, have been performed. In the poloidal simulation a significant sheath
(wind) of magnetized moving material developed and partially stabilized the jet
to helical twisting. The fundamental pinch mode was not similarly affected and
emission knots developed in the poloidal simulation. Thus, astrophysical jets
surrounded by outflowing winds could develop knotty structures along a straight
jet triggered by pinching. Where helical twisting dominated the dynamics,
magnetic field orientation along the line-of-sight could be organized by the
toroidal flow field accompanying helical twisting. On astrophysical jets such
structure could lead to a reversal of the direction of Faraday rotation in
adjacent zones along a jet. Theoretical analysis showed that the different
dynamical behavior of the two simulations could be entirely understood as a
result of dependence on the velocity shear between jet and wind which must
exceed a surface Alfven speed before the jet becomes unstable to helical and
higher order modes of jet distortion.Comment: 25 pages, 15 figures, in press Astrophysical Journal (September
3C454.3 reveals the structure and physics of its 'blazar zone'
Recent multi-wavelength observations of 3C454.3, in particular during its
giant outburst in 2005, put severe constraints on the location of the 'blazar
zone', its dissipative nature, and high energy radiation mechanisms. As the
optical, X-ray, and millimeter light-curves indicate, significant fraction of
the jet energy must be released in the vicinity of the millimeter-photosphere,
i.e. at distances where, due to the lateral expansion, the jet becomes
transparent at millimeter wavelengths. We conclude that this region is located
at ~10 parsecs, the distance coinciding with the location of the hot dust
region. This location is consistent with the high amplitude variations observed
on ~10 day time scale, provided the Lorentz factor of a jet is ~20. We argue
that dissipation is driven by reconfinement shock and demonstrate that X-rays
and gamma-rays are likely to be produced via inverse Compton scattering of
near/mid IR photons emitted by the hot dust. We also infer that the largest
gamma-to-synchrotron luminosity ratio ever recorded in this object - having
taken place during its lowest luminosity states - can be simply due to weaker
magnetic fields carried by a less powerful jet.Comment: 19 pages, 3 figures, accepted for publication in Ap
Kink instabilities in jets from rotating magnetic fields
We have performed 2.5D and 3D simulations of conical jets driven by the
rotation of an ordered, large-scale magnetic field in a stratified atmosphere.
The simulations cover about three orders of magnitude in distance to capture
the centrifugal acceleration as well as the evolution past the Alfven surface.
We find that the jets develop kink instabilities, the characteristics of which
depend on the velocity profile imposed at the base of the flow. The
instabilities are especially pronounced with a rigid rotation profile, which
induces a shearless magnetic field. The jet's expansion appears to be limiting
the growth of Alfven mode instabilities.Comment: 10 pages, 13 figures, accepted for publication in A&
Structure and Stability of Keplerian MHD Jets
MHD jet equilibria that depend on source properties are obtained using a
simplified model for stationary, axisymmetric and rotating magnetized outflows.
The present rotation laws are more complex than previously considered and
include a Keplerian disc. The ensuing jets have a dense, current-carrying
central core surrounded by an outer collar with a return current. The
intermediate part of the jet is almost current-free and is magnetically
dominated. Most of the momentum is located around the axis in the dense core
and this region is likely to dominate the dynamics of the jet. We address the
linear stability and the non-linear development of instabilities for our models
using both analytical and 2.5-D numerical simulation's. The instabilities seen
in the simulations develop with a wavelength and growth time that are well
matched by the stability analysis. The modes explored in this work may provide
a natural explanation for knots observed in astrophysical jets.Comment: 35 pages, accepted by the Ap
Waves and Instabilities in Accretion Disks: MHD Spectroscopic Analysis
A complete analytical and numerical treatment of all magnetohydrodynamic
waves and instabilities for radially stratified, magnetized accretion disks is
presented. The instabilities are a possible source of anomalous transport.
While recovering results on known hydrodynamicand both weak- and strong-field
magnetohydrodynamic perturbations, the full magnetohydrodynamic spectra for a
realistic accretion disk model demonstrates a much richer variety of
instabilities accessible to the plasma than previously realized. We show that
both weakly and strongly magnetized accretion disks are prone to strong
non-axisymmetric instabilities.The ability to characterize all waves arising in
accretion disks holds great promise for magnetohydrodynamic spectroscopic
analysis.Comment: FOM-Institute for plasma physics "Rijnhuizen", Nieuwegein, the
Netherlands 12 pages, 3 figures, Accepted for publication in ApJ
Cosine and Sine Operators Related with Orthogonal Polynomial Sets on the Intervall [-1,1]
The quantization of phase is still an open problem. In the approach of
Susskind and Glogower so called cosine and sine operators play a fundamental
role. Their eigenstates in the Fock representation are related with the
Chebyshev polynomials of the second kind. Here we introduce more general cosine
and sine operators whose eigenfunctions in the Fock basis are related in a
similar way with arbitrary orthogonal polynomial sets on the intervall [-1,1].
To each polynomial set defined in terms of a weight function there corresponds
a pair of cosine and sine operators. Depending on the symmetry of the weight
function we distinguish generalized or extended operators. Their eigenstates
are used to define cosine and sine representations and probability
distributions. We consider also the inverse arccosine and arcsine operators and
use their eigenstates to define cosine-phase and sine-phase distributions,
respectively. Specific, numerical and graphical results are given for the
classical orthogonal polynomials and for particular Fock and coherent states.Comment: 1 tex-file (24 pages), 11 figure
Bendings of radio jets in BL Lacertae objects I: EVN and MERLIN observations
Several blazars, and BL Lac objects in particular, show a misalignment
between the jet orientation on parsec and kiloparsec scales. Some authors (i.e.
Conway & Murphy, 1993) have attempted to explain this behaviour invoking
helical jets for misalignment angles around 90\degr, showing how in this case
there are interesting implications for the understanding of the medium into
which the jet is expanding. By comparing sensitive VLA observations (Cassaro et
al., 1999) with images available in the literature for the BL Lac objects from
the 1-Jy Sample (Stickel et al., 1991), it is clear that there is a wide range
of misalignments between the initial jet direction and the kpc-scale jet, when
detected. We have carried out VLBI observations of these BL Lac objects, in
order to investigate the spatial evolution of the radio jets from few tens to
hundreds of mas, and to search for helical jets in this class of sources. We
present here the first dataset obtained from EVN+MERLIN observations at 5 GHz
for seven objects. From these observations we never have a clear detection of
helical jets, we only have a possible signature of their presence in 2 objects.
In only one of the sources with a misalignment angle around 90\degr the
presence of helical jets can be ruled out. This implies that it is not possible
to invoke helical jets to explain the morphology of all the sources showing a
misalignment of about 90\degr between the parsec and the kiloparsec scale
jets.Comment: 12 pages, 9 figures, latex, accepted by Astronomy & Astrophysic
Ohm's Law for a Relativistic Pair Plasma
We derive the fully relativistic Ohm's law for an electron-positron plasma.
The absence of non-resistive terms in Ohm's law and the natural substitution of
the 4-velocity for the velocity flux in the relativistic bulk plasma equations
do not require the field gradient length scale to be much larger than the
lepton inertial lengths, or the existence of a frame in which the distribution
functions are isotropic.Comment: 12 pages, plain TeX, Phys. Rev. Lett. 71 3481 (1993
- …
