333 research outputs found

    Light clusters and the pasta phase

    Full text link
    The effects of including light clusters in nuclear matter at low densities are investigated within four different parametrizations of relativistic models at finite temperature. Both homogeneous and inhomogeneous matter (pasta phase) are described for neutral nuclear matter with fixed proton fractions. We discuss the effect of the density dependence of the symmetry energy, the temperature and the proton fraction on the non-homogeneous matter forming the inner crust of proto-neutron stars. It is shown that the number of nucleons in the clusters, the cluster proton fraction and the sizes of the Wigner Seitz cell and of the cluster are very sensitive to the density dependence of the symmetry energy.Comment: 14 pages, 14 figures; Accepted for publication in Phys. Rev.

    Collective modes in relativistic npe matter at finite temperature

    Get PDF
    Isospin and density waves in neutral neutron-proton-electron (npe) matter are studied within a relativistic mean-field hadron model at finite temperature with the inclusion of the electromagnetic field. The dispersion relation is calculated and the collective modes are obtained. The unstable modes are discussed and the spinodals, which separate the stable from the unstable regions, are shown for different values of the momentum transfer at various temperatures. The critical temperatures are compared with the ones obtained in a system without electrons. The largest critical temperature, 12.39 MeV, occurs for a proton fraction y_p=0.47. For y_p=0.3 we get TcrT_{cr} =5 MeV and for y_p>0.495 Tcr8T_cr\lesssim 8 MeV. It is shown that at finite temperature the distillation effect in asymmetric matter is not so efficient and that electron effects are particularly important for small momentum transfers.Comment: 10 pages, 6 figure

    Relativistic Mean-Field Hadronic Models under Nuclear Matter Constraints

    Get PDF
    Relativistic mean-field (RMF) models have been widely used in the study of many hadronic frameworks because of several important aspects not always present in nonrelativistic models, such as intrinsic Lorentz covariance, automatic inclusion of spin, appropriate saturation mechanism for nuclear matter, causality and, therefore, no problems related to superluminal speed of sound. With the aim of identifying the models which best satisfy well known properties of nuclear matter, we have analyzed 263263 parameterizations of seven different types of RMF models under three different sets of constraints related to symmetric nuclear matter, pure neutron matter, symmetry energy, and its derivatives. One of these (SET1) is formed of the same constraints used in a recent work [M. Dutra et al., Phys. Rev. C 85, 035201 (2012)] in which we analyzed 240240 Skyrme parameterizations. The results pointed to 22 models consistent with all constraints. By using another set of constraints, namely, SET2a, formed by the updated versions of the previous one, we found 44 models approved simultaneously. Finally, in the third set, named SET2b, in which the values of the constraints are more restrictive, we found 33 consistent models. Another interesting feature of our analysis is that the results change dramatically if we do not consider the constraint regarding the volume part of the isospin incompressibility (Kτ,vK_{\tau,\rm v}). In this case, we have 3535 approved models in SET2a and 3030 in SET2b.Comment: 63 pages, 3 figures and 9 tables. Version accepted for publication in PR

    The pasta phase within density dependent hadronic models

    Full text link
    In the present paper we investigate the onset of the pasta phase with different parametrisations of the density dependent hadronic model and compare the results with one of the usual parametrisation of the non-linear Walecka model. The influence of the scalar-isovector virtual delta meson is shown. At zero temperature two different methods are used, one based on coexistent phases and the other on the Thomas-Fermi approximation. At finite temperature only the coexistence phases method is used. npe matter with fixed proton fractions and in beta-equilibrium are studied. We compare our results with restrictions imposed on the the values of the density and pressure at the inner edge of the crust, obtained from observations of the Vela pulsar and recent isospin diffusion data from heavy-ion reactions, and with predictions from spinodal calculations.Comment: 15 pages, 11 figures and 7 table

    Instabilities in asymmetric nuclear matter

    Full text link
    The existence of phase transitions from liquid to gas phases in asymmetric nuclear matter (ANM) is related with the instability regions which are limited by the spinodals. In this work we investigate the instabilities in ANM described within relativistic mean field hadron models, both with constant and density dependent couplings at zero and finite temperatures. In calculating the proton and neutron chemical potentials we have used an expansion in terms of Bessel functions that is convenient at low densities. The role of the isovector scalar δ\delta-meson is also investigated in the framework of relativistic mean field models and density dependent hadronic models. It is shown that the main differences occur at finite temperature and large isospin asymmetry close to the boundary of the instability regions.Comment: 13 pages, 5 figures; to appear in Phys. Rev.

    Relativistic Mean-Field Models and Nuclear Matter Constraints

    Full text link
    This work presents a preliminary study of 147 relativistic mean-field (RMF) hadronic models used in the literature, regarding their behavior in the nuclear matter regime. We analyze here different kinds of such models, namely: (i) linear models, (ii) nonlinear \sigma^3+\sigma^4 models, (iii) \sigma^3+\sigma^4+\omega^4 models, (iv) models containing mixing terms in the fields \sigma and \omega, (v) density dependent models, and (vi) point-coupling ones. In the finite range models, the attractive (repulsive) interaction is described in the Lagrangian density by the \sigma (\omega) field. The isospin dependence of the interaction is modeled by the \rho meson field. We submit these sets of RMF models to eleven macroscopic (experimental and empirical) constraints, used in a recent study in which 240 Skyrme parametrizations were analyzed. Such constraints cover a wide range of properties related to symmetric nuclear matter (SNM), pure neutron matter (PNM), and both SNM and PNM.Comment: 3 Pages, submitted for proceedings of XXXV Reuni\~ao de Trabalho sobre F\'isica Nuclear no Brasil 201

    q- Deformed Boson Expansions

    Full text link
    A deformed boson mapping of the Marumori type is derived for an underlying su(2)su(2) algebra. As an example, we bosonize a pairing hamiltonian in a two level space, for which an exact treatment is possible. Comparisons are then made between the exact result, our q- deformed boson expansion and the usual non - deformed expansion.Comment: 8 pages plus 2 figures (available upon request

    Hadron production in non linear relativistic mean field models

    Full text link
    By using a parametrization of the non-linear Walecka model which takes into account the binding energy of different hyperons, we present a study of particle production yields measured in central Au-Au collision at RHIC. Two sets of different hyperon-meson coupling constants are employed in obtaining the hadron production and chemical freeze-out parameters. These quantities show a weak dependence on the used hyperon-meson couplings. Results are in good overall accordance with experimental data. We have found that the repulsion among the baryons is quite small and, through a preliminary analysis of the effective mesonic masses, we suggest a way to improve the fittings.Comment: 18 pages, 2 figure

    Phase transitions of hadronic to quark matter at finite T and \mu_B

    Full text link
    The phase transition of hadronic to quark matter and the boundaries of the mixed hadron-quark coexistence phase are studied within the two Equation of State (EoS) model. The relativistic effective mean field approach with constant and density dependent meson-nucleon couplings is used to describe hadronic matter, and the MIT Bag model is adopted to describe quark matter. The boundaries of the mixed phase for different Bag constants are obtained solving the Gibbs equations. We notice that the dependence on the Bag parameter of the critical temperatures (at zero chemical potential) can be well reproduced by a fermion ultrarelativistic quark gas model, without contribution from the hadron part. At variance the critical chemical potentials (at zero temperature) are very sensitive to the EoS of the hadron sector. Hence the study of the hadronic EoS is much more relevant for the determination of the transition to the quark-gluon-plasma at finite baryon density and low-T. Moreover in the low temperature and finite chemical potential region no solutions of the Gibbs conditions are existing for small Bag constant values, B < (135 MeV)^4. Isospin effects in asymmetric matter appear relevant in the high chemical potential regions at lower temperatures, of interest for the inner core properties of neutron stars and for heavy ion collisions at intermediate energies.Comment: 24 pages and 16 figures (revtex4

    Relativistic Mean Field Approximation in a Density Dependent Parametrization Model at Finite Temperature

    Get PDF
    In this work we calculate the equation of state of nuclear matter for different proton fractions at zero and finite temperature within the Thomas Fermi approach considering three different parameter sets: the well-known NL3 and TM1 and a density dependent parametrization proposed by Typel and Wolter. The main differences are outlined and the consequences of imposing beta-stability in these models are discussed.Comment: 13 pages, 10 figure
    corecore