5 research outputs found
Characterization of a novel, linear radioiodinated vasopressin antagonist: an excellent radioligand for vasopressin V1a receptors
We report on the pharmacological properties of a potent and selective linear vasopressin (AVP) V1a receptor antagonist HO-Phenylacetyl1-D-Tyr(Me)2-Phe3-Gln4-Asn5-Arg6-Pro7-Arg8-NH2 (HO-LVA). Iodinated on the phenolic substituent at position 1, [125I]-HO-LVA displayed the highest affinity for rat liver V1a receptors (8 pM) ever reported. Furthermore, affinities of HO-LVA and I-HO-LVA for V1b, V2 and oxytocin (OT) receptors was 400- to 1,000-fold lower than for V1a receptors, rendering it a highly selective ligand. Both HO-LVA and its iodinated derivative are V1 antagonists, they potently inhibited AVP-induced inositol-phosphate accumulation in WRK1 cells, and also, although with a much lower potency, the AVP-induced ACTH release from freshly prepared pituitary cells. Using autoradiography [125I]-HO-LVA appeared to be the first radioligand to successfully identify and localize the presence of V1a receptors in rat liver and blood vessel walls. Moreover, several new brain regions expressing V1a receptors could be identified, in addition to those brain regions that were previously identified with other radiolabelled AVP analogues
Key Amino Acids Located within the Transmembrane Domains 5 and 7 Account for the Pharmacological Specificity of the Human V1b Vasopressin Receptor
In situ localization of vasotocin receptor gene transcripts in the brain-pituitary-gonadal axis of the catfish Heteropneustes fossilis: a morpho-functional study
Imaging the neural circuitry and chemical control of aggressive motivation
<p>Abstract</p> <p>Background</p> <p>With the advent of functional magnetic resonance imaging (fMRI) in awake animals it is possible to resolve patterns of neuronal activity across the entire brain with high spatial and temporal resolution. Synchronized changes in neuronal activity across multiple brain areas can be viewed as functional neuroanatomical circuits coordinating the thoughts, memories and emotions for particular behaviors. To this end, fMRI in conscious rats combined with 3D computational analysis was used to identifying the putative distributed neural circuit involved in aggressive motivation and how this circuit is affected by drugs that block aggressive behavior.</p> <p>Results</p> <p>To trigger aggressive motivation, male rats were presented with their female cage mate plus a novel male intruder in the bore of the magnet during image acquisition. As expected, brain areas previously identified as critical in the organization and expression of aggressive behavior were activated, e.g., lateral hypothalamus, medial basal amygdala. Unexpected was the intense activation of the forebrain cortex and anterior thalamic nuclei. Oral administration of a selective vasopressin V<sub>1a </sub>receptor antagonist SRX251 or the selective serotonin reuptake inhibitor fluoxetine, drugs that block aggressive behavior, both caused a general suppression of the distributed neural circuit involved in aggressive motivation. However, the effect of SRX251, but not fluoxetine, was specific to aggression as brain activation in response to a novel sexually receptive female was unaffected.</p> <p>Conclusion</p> <p>The putative neural circuit of aggressive motivation identified with fMRI includes neural substrates contributing to emotional expression (i.e. cortical and medial amygdala, BNST, lateral hypothalamus), emotional experience (i.e. hippocampus, forebrain cortex, anterior cingulate, retrosplenial cortex) and the anterior thalamic nuclei that bridge the motor and cognitive components of aggressive responding. Drugs that block vasopressin neurotransmission or enhance serotonin activity suppress activity in this putative neural circuit of aggressive motivation, particularly the anterior thalamic nuclei.</p
