3,378 research outputs found
Influence of seismic activity on the atmospheric electric field in Lisbon (Portugal) from 1955 to 1991
In the present study, we considered the influence of seismic activity on the atmospheric electric field recorded at Portela meteorological station (Lisbon, Portugal) for the period from 1955 to 1991. To this end, an exploratory method was developed, which involved the selection of events for which the distance from the atmospheric electrical field sensor to the earthquake epicenter is smaller than the preparation radius of the event. This enabled the correlation of the atmospheric electric field variations with a quantity S, defined basically as the ratio of the earthquake preparation radius to the distance between the sensor and the event epicenter. The first results
show promising perspectives, but clearly a more profound study is required, in which a careful analysis of the weather conditions and other variables, like atmospheric radon levels, must be considered
Drift velocity and gain in argon- and xenon-based mixtures
We present measurements of drift velocities and gains in gas mixtures based
on Ar and Xe, with CO2, CH4, and N2 as quenchers, and compare them with
calculations. In particular, we show the dependence of Ar- and Xe-CO2 drift
velocities and gains on the amount of nitrogen contamination in the gas, which
in real experiments may build up through leaks. A quantification of the Penning
mechanism which contributes to the Townsend coefficients of a given gas mixture
is proposed.Comment: 11 pages, 7 figures, accepted for publication in Nucl.Instrum.Meth.
A. Data files available at http://www-alice.gsi.de/tr
Meson-Baryon s-wave Resonances with Strangeness -3
Starting from a consistent SU(6) extension of the Weinberg-Tomozawa (WT)
meson-baryon chiral Lagrangian (Phys. Rev. D74 (2006) 034025), we study the
s-wave meson-baryon resonances in the strangeness S=-3 and negative parity
sector. Those resonances are generated by solving the Bethe-Salpeter equation
with the WT interaction used as kernel. The considered mesons are those of the
35-SU(6)-plet, which includes the pseudoscalar (PS) octet of pions and the
vector (V) nonet of the rho meson. For baryons we consider the 56-SU(6)-plet,
made of the 1/2+ octet of the nucleon and the 3/2+ decuplet of the Delta.
Quantum numbers I(J^P)=0(3/2^-) are suggested for the experimental resonances
Omega*(2250)- and Omega*(2380)-. Among other, resonances with I=1 are found,
with minimal quark content sss\bar{l}l', being s the strange quark and l, l'
any of the the light up or down quarks. A clear signal for such a pentaquark
would be a baryonic resonance with strangeness -3 and electric charge of -2 or
0, in proton charge units. We suggest looking for K- Xi- resonances with masses
around 2100 and 2240 MeV in the sector 1(1/2^-), and for pi Omega- and K- Xi*-
resonances with masses around 2260 MeV in the sector 1(3/2^-).Comment: 3 pages, 1 Postscript figure, 7 table
Simulation of VUV electroluminescence in micropattern gaseous detectors: the case of GEM and MHSP
Electroluminescence produced during avalanche development in gaseous
avalanche detectors is an useful information for triggering, calorimetry and
tracking in gaseous detectors. Noble gases present high electroluminescence
yields, emitting mainly in the VUV region. The photons can provide signal
readout if appropriate photosensors are used. Micropattern gaseous detectors
are good candidates for signal amplification in high background and/or low rate
experiments due to their high electroluminescence yields and radiopurity. In
this work, the VUV light responses of the Gas Electron Multiplier and of the
Micro-Hole Strip Plate, working with pure xenon, are simulated and studied in
detail using a new and versatile C++ toolkit. It is shown that the solid angle
subtended by a photosensor placed below the microstructures depends on the
operating conditions. The obtained absolute EL yields, determined for different
gas pressures and as functions of the applied voltage, are compared with those
determined experimentally.Comment: Accepted for publication in Journal of Instrumentatio
Evaluations of the morphologic structure and development of the pequi seed (Caryocar Braziliense Camb.) (Caryocaraceae) using images of magnetic resonance tomography.
Pressure effect in the X-ray intrinsic position resolution in noble gases and mixtures
A study of the gas pressure effect in the position resolution of an
interacting X- or gamma-ray photon in a gas medium is performed. The intrinsic
position resolution for pure noble gases (Argon and Xenon) and their mixtures
with CO2 and CH4 were calculated for several gas pressures (1-10bar) and for
photon energies between 5.4 and 60.0 keV, being possible to establish a linear
match between the intrinsic position resolution and the inverse of the gas
pressure in that energy range. In order to evaluate the quality of the method
here described, a comparison between the available experimental data and the
calculated one in this work, is done and discussed. In the majority of the
cases, a strong agreement is observed
Operation of a 1-Liter-Volume Gaseous Argon Scintillation Counter
We have built a gas-phase argon ionization detector to measure small nuclear
recoil energies (< 10 keVee). In this paper, we describe the detector response
to X-ray and gamma calibration sources, including analysis of pulse shapes,
software triggers, optimization of gas content, and energy- and
position-dependence of the signal. We compare our experimental results against
simulation using a 5.9-keV X-ray source, as well as higher-energy gamma sources
up to 1332 keV. We conclude with a description of the detector, DAQ, and
software settings optimized for a measurement of the low-energy nuclear
quenching factor in gaseous argon. This work was performed under the auspices
of the U.S. Department of Energy by Lawrence Livermore National Laboratory in
part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344.
Funded by Lab-wide LDRD. LLNL-JRNL-415990-DRAFT.Comment: 29 pages, single-column, double-spaced, 21 figure
Characterization of the Hamamatsu S8664 Avalanche Photodiode for X-Ray and VUV-light detection
We present the first operation of the Avalanche Photodiode (APD) from
Hamamatsu to xenon scintillation light and to direct X-rays of 22.1 keV and 5.9
keV. A large non-linear response was observed for the direct X-ray detection.
At 415 V APD bias voltage it was of about 30 % for 22.1 keV and about 45 % for
5.9 keV. The quantum efficiency for 172 nm photons has been measured to be 69
+/- 15 %.Comment: 11 pages, 3 figures, submitted to Elsevie
The influence of the boundary resistivity on the proximity effect
We apply the theory of Takahashi and Tachiki in order to explain
theoretically the dependence of the upper critical magnetic field of a S/N
multilayer on the temperature. This problem has been already investigated in
the literature, but with a use of an unphysical scaling parameter for the
coherence length. We show explicitely that, in order to describe the data, such
an unphysical parameter is unnecessary if one takes into account the boundary
resisitivity of the S/N interface. We obtain a very good agreement with the
experiments for the multilayer systems Nb/Cu and V/Ag, with various layer
thicknesses.Comment: 12 pages, 5 figure
- …
