2,356 research outputs found

    MHD and deep mixing in evolved stars. 1. 2D and 3D analytical models for the AGB

    Full text link
    The advection of thermonuclear ashes by magnetized domains emerging from near the H-shell was suggested to explain AGB star abundances. Here we verify this idea quantitatively through exact MHD models. Starting with a simple 2D geometry and in an inertia frame, we study plasma equilibria avoiding the complications of numerical simulations. We show that, below the convective envelope of an AGB star, variable magnetic fields induce a natural expansion, permitted by the almost ideal MHD conditions, in which the radial velocity grows as the second power of the radius. We then study the convective envelope, where the complexity of macro-turbulence allows only for a schematic analytical treatment. Here the radial velocity depends on the square root of the radius. We then verify the robustness of our results with 3D calculations for the velocity, showing that, for both the studied regions, the solution previously found can be seen as a planar section of a more complex behavior, in which anyway the average radial velocity retains the same dependency on radius found in 2D. As a final check, we compare our results to approximate descriptions of buoyant magnetic structures. For realistic boundary conditions the envelope crossing times are sufficient to disperse in the huge convective zone any material transported, suggesting magnetic advection as a promising mechanism for deep mixing. The mixing velocities are smaller than for convection, but larger than for diffusion and adequate to extra-mixing in red giants

    Nucleosynthesis and mixing on the Asymptotic Giant Branch. III. Predicted and observed s-process abundances

    Get PDF
    We present the results of s-process nucleosynthesis calculations for AGB stars of different metallicities and initial masses. The computations were based on previously published stellar evolutionary models that account for the III dredge up phenomenon occurring late on the AGB. Neutron production is driven by the 13C(alpha,n)16O reaction during the interpulse periods in a tiny layer in radiative equilibrium at the top of the He- and C-rich shell. The s-enriched material is subsequently mixed with the envelope by the III dredge up, and the envelope composition is computed after each thermal pulse. We follow the changes in the photospheric abundance of the Ba-peak elements (heavy s, or `hs') and that of the Zr-peak ones (light s, or `ls'), whose logarithmic ratio [hs/ls] has often been adopted as an indicator of the s-process efficiency. The theoretical predictions are compared with published abundances of s elements for Galactic AGB giants of classes MS, S, SC, post-AGB supergiants, and for various classes of binary stars. The observations in general confirm the complex dependence of n captures on metallicity. They suggest that a moderate spread exists in the abundance of 13C that is burnt in different stars. Although additional observations are needed, a good understanding has been achieved of s-process operation in AGB. The detailed abundance distribution including the light elements (CNO) of a few s-enriched stars at different metallicity are examined.Comment: Accepted for ApJ, 59 pages, 19 figures, 5 table

    Efecto del estrés producido por la mezcla de sales en la concentración de aldehído malónico, proteínas y enzimas antioxidantes de Leymus chinensis de tres colores foliares diferentes

    Get PDF
    The mixed salt stress is common in nature. Salt stressalways affects plant growth. Different plant species have different adaptive capacity to salty soil. Leymus chinensis is an herbaceous plant with different leaf colors. However, little research was conducted to explore the different tolerance mechanisms to salt stress among the three different leaf colour genotypes of Leymus chinensis (grey green, transitional color, yellow green). Pot experiments for Leymus chinensis in three leaf colors were conducted under mixed salt treatments in 2010. Malondialdehyde (MDA) and protein concentrations, and the activity of various antioxidant enzymes [i.e., superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), dehydroascorbate reductase (DHAR) and monodehydroascorbate reductase (MDHAR)] were determined and compared among the three leaf color genotypes of Leymus chinensis. The concentrations of MDA and protein, and the activity of antioxidant enzymes showed an increasing trend with increasing pHs in almost all three leaf colors, and all of them became highest when salt stress and pH values were also highest. Moreover, antioxidant enzymes were the highest in the grey-green leaf color, and the lowest in the yellow green leaf color after exposure to the same pH treatment. The results suggested that all three leaf colors of Leymus chinensis were tolerant to salt stress, and the salt-tolerance declined according to the order of grey green > transitional color > yellow green of Leymus chinensis. This study can give us a better understanding of the intra-species adaptation to mixed salt soils.El estrés causado por mezcla de sales en el suelo es común en la naturaleza. El estrés salino siempre afecta el crecimiento de las plantas. Plantas de especies diferentes difieren en su capacidad de adaptación al estrés por sales en el suelo. Leymus chinensis es una planta herbácea con diferentes colores foliares. Sin embargo, se han conducido pocos estudios tendientes a determinar los diferentes mecanismos de tolerancia al estrés salino entre los tres genotipos de color foliar diferente de L. chinensis (grisáceo verdoso, color intermedio, amarillo verdoso). En 2010, se condujeron experimentos en macetas usando genotipos de L. chinensis de tres colores diferentes de hoja expuestos o no a tratamientos conteniendo una mezcla de sales. Las concentraciones de aldehído malónico (MDA) y proteínas, y la actividad de varias enzimas antioxidantes [es decir, la superóxido dismutasa (SOD), catalasa (CAT), ascórbico peroxidasa (APX), glutatión reductasa (GR), dehidroascórbico reductasa (DHAR) y monodehidroascórbico reductasa (MDHAR)] se determinaron y compararon entre los tres genotipos de color foliar diferente de L. chinensis. Las concentraciones de MDA y proteínas, y la actividad de enzimas antioxidantes mostraron una tendencia a incrementarse a mayores pHs en casi todos los colores foliares, y las tendencias en los tres colores foliares alcanzaron su punto máximo cuando el estrés salino y los valores de pH fueron máximos. Más aún, las concentraciones de las enzimas antioxidantes fueron las más altas en el color grisáceo verdoso, intermedias en el color intermedio, y las más bajas en el color amarillo verdoso después de la exposición al mismo tratamiento de pH. Los resultados sugirieron que los genotipos de los tres colores foliares de L. chinensis fueros tolerantes al estrés salino, y la tolerancia a la sal declinó de acuerdo al orden grisáceo verdoso > color intermedio > amarillo verdoso de L. chinensis. Este estudio puede proveer un mejor entendimiento de la adaptación intraespecífica de L. chinensis a suelos salinos.Fil: Zhou, C.. Chinese Academy of Science; China. Liaoning University; ChinaFil: Busso, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; ArgentinaFil: Yang, Y. G.. Liaoning University; ChinaFil: Zhang, Z.. Shenyang University; ChinaFil: Wang, Z. W.. Chinese Academy of Science; ChinaFil: Yang, Y. F.. Northeast Normal University; ChinaFil: Han, X. G.. Chinese Academy of Science; Chin

    Abundance gradients in the Milky Way for alpha elements, Iron peak elements, Barium, Lanthanum and Europium

    Full text link
    We model the abundance gradients in the disk of the Milky Way for several chemical elements (O, Mg, Si, S, Ca, Sc, Ti, Co, V, Fe, Ni, Zn, Cu, Mn, Cr, Ba, La and Eu), and compare our results with the most recent and homogeneous observational data. We adopt a chemical evolution model able to well reproduce the main properties of the solar vicinity. We compute, for the first time, the abundance gradients for all the above mentioned elements in the galactocentric distance range 4 - 22 kpc. The comparison with the observed data on Cepheids in the galactocentric distance range 5-17 kpc gives a very good agreement for many of the studied elements. In addition, we fit very well the data for the evolution of Lanthanum in the solar vicinity for which we present results here for the first time. We explore, also for the first time, the behaviour of the abundance gradients at large galactocentric distances by comparing our results with data relative to distant open clusters and red giants and select the best chemical evolution model model on the basis of that. We find a very good fit to the observed abundance gradients, as traced by Cepheids, for most of the elements, thus confirming the validity of the inside-out scenario for the formation of the Milky Way disk as well as the adopted nucleosynthesis prescriptions.Comment: 11 pages, 9 figures, accepted for publication in A&

    The early evolution of Globular Clusters: the case of NGC 2808

    Full text link
    Enhancement and spread of helium among globular cluster stars have been recently suggested as a way to explain the horizontal branch blue tails, in those clusters which show a primordial spread in the abundances of CNO and other elements involved in advanced CNO burning (D'Antona et al. 2002). In this paper we examine the implications of the hypothesis that, in many globular clusters, stars were born in two separate events: an initial burst (first generation), which gives origin to probably all high and intermediate mass stars and to a fraction of the cluster stars observed today, and a second, prolonged star formation phase (second generation) in which stars form directly from the ejecta of the intermediate mass stars of the first generation. In particular, we consider in detail the morphology of the horizontal branch in NGC 2808 and argue that it unveils the early cluster evolution, from the birth of the first star generation to the end of the second phase of star formation. This framework provides a feasible interpretation for the still unexplained dichotomy of NGC 2808 horizontal branch, attributing the lack of stars in the RR Lyr region to the gap in the helium content between the red clump, whose stars are considered to belong to the first stellar generation and have primordial helium, and the blue side of the horizontal branch, whose minimum helium content reflects the helium abundance in the smallest mass (~4Msun)contributing to the second stellar generation. This scenario provides constraints on the required Initial Mass Function, in a way that a great deal of remnant neutron stars and stellar mass black holes might have been produced.Comment: 23 pages, 7 figures, in press on The Astrophysical Journa

    Reaction rate uncertainties and 26Al in AGB silicon carbide stardust

    Get PDF
    Stardust is a class of presolar grains each of which presents an ideally uncontaminated stellar sample. Mainstream silicon carbide (SiC) stardust formed in the extended envelopes of carbon-rich asymptotic giant branch (AGB) stars and incorporated the radioactive nucleus 26Al as a trace element. The aim of this paper is to analyse in detail the effect of nuclear uncertainties, in particular the large uncertainties of up to four orders of magnitude related to the 26Al_g+(p,gamma)27Si reaction rate, on the production of 26Al in AGB stars and compare model predictions to data obtained from laboratory analysis of SiC stardust grains. Stellar uncertainties are also briefly discussed. We use a detailed nucleosynthesis postprocessing code to calculate the 26Al/27Al ratios at the surface of AGB stars of different masses (M = 1.75, 3, and 5 M_sun) and metallicities (Z = 0.02, 0.012, and 0.008). For the lower limit and recommended value of the 26Al_g(p,gamma)27Si reaction rate, the predicted 26Al/27Al ratios replicate the upper values of the range of the 26Al/27Al ratios measured in SiC grains. For the upper limit of the 26Al_g(p,gamma)27Si reaction rate, instead, the predicted 26Al/27Al ratios are approximately 100 times lower and lie below the range observed in SiC grains. When considering models of different masses and metallicities, the spread of more than an order of magnitude in the 26Al/27Al ratios measured in stellar SiC grains is not reproduced. We propose two scenarios to explain the spread of the 26Al/27Al ratios observed in mainstream SiC, depending on the choice of the 26Al_g+p reaction rate. One involves different times of stardust formation, the other involves extra-mixing processes. Stronger conclusions will be possible after more information is available from future nuclear experiments on the 26Al_g+p reaction.Comment: 6 pages, 5 Postscript figures, accepted for publication in Astronomy and Astrophysic

    Can Extra Mixing in RGB and AGB Stars Be Attributed to Magnetic Mechanisms?

    Get PDF
    It is known that there must be some weak form of transport (called cool bottom processing, or CBP) acting in low mass RGB and AGB stars, adding nuclei, newly produced near the hydrogen-burning shell, to the convective envelope. We assume that this extra-mixing originates in a stellar dynamo operated by the differential rotation below the envelope, maintaining toroidal magnetic fields near the hydrogen-burning shell. We use a phenomenological approach to the buoyancy of magnetic flux tubes, assuming that they induce matter circulation as needed by CBP models. This establishes requirements on the fields necessary to transport material from zones where some nuclear burning takes place, through the radiative layer, and into the convective envelope. Magnetic field strengths are determined by the transport rates needed by CBP for the model stellar structure of a star of initially 1.5 solar mass, in both the AGB and RGB phases. The field required for the AGB star in the processing zone is B_0 ~ 5x10^6 G; at the base of the convective envelope this yields an intensity B_E < 10^4 G (approximately). For the RGB case, B_0 ~ 5x10^4 to 4x10^5 G, and the corresponding B_E are ~ 450 to 3500 G. These results are consistent with existing observations on AGB stars. They also hint at the basis for high field sources in some planetary nebulae and the very large fields found in some white dwarfs. It is concluded that transport by magnetic buoyancy should be considered as a possible mechanism for extra mixing through the radiative zone, as is required by both stellar observations and the extensive isotopic data on circumstellar condensates found in meteorites.Comment: 26 pages, 4 figures, accepted by Astrophysical Journa

    Atomic data for neutron-capture elements III. Charge transfer rate coefficients for low-charge ions of Ge, Se, Br, Kr, Rb, and Xe

    Full text link
    We present total and final-state resolved charge transfer (CT) rate coefficients for low-charge Ge, Se, Br, Kr, Rb, and Xe ions reacting with neutral hydrogen over the temperature range 10^2--10^6 K. Each of these elements has been detected in ionized astrophysical nebulae, particularly planetary nebulae. CT rate coefficients are a key ingredient for the ionization equilibrium solutions needed to determine total elemental abundances from those of the observed ions. A multi-channel Landau Zener approach was used to compute rate coefficients for projectile ions with charges q=2-5, and for singly-charged ions the Demkov approximation was utilized. Our results for five-times ionized species are lower limits, due to the incompleteness of level energies in the NIST database. In addition, we computed rate coefficients for charge transfer ionization reactions between the neutral species of the above six elements and ionized hydrogen. The resulting total and state-resolved CT rate coefficients are tabulated and available at the CDS. In tandem with our concurrent investigations of other important atomic processes in photoionized nebulae, this work will enable robust investigations of neutron-capture element abundances and nucleosynthesis via nebular spectroscopy.Comment: 11 pages, 4 figures, accepted for publication in Astronomy & Astrophysic
    corecore