205 research outputs found
Carrier-induced ferromagnetism in p-Zn1-xMnxTe
We present a systematic study of the ferromagnetic transition induced by the
holes in nitrogen doped Zn1-xMnxTe epitaxial layers, with particular emphasis
on the values of the Curie-Weiss temperature as a function of the carrier and
spin concentrations. The data are obtained from thorough analyses of the
results of magnetization, magnetoresistance and spin-dependent Hall effect
measurements. The experimental findings compare favorably, without adjustable
parameters, with the prediction of the Rudermann-Kittel-Kasuya-Yosida (RKKY)
model or its continuous-medium limit, that is, the Zener model, provided that
the presence of the competing antiferromagnetic spin-spin superexchange
interaction is taken into account, and the complex structure of the valence
band is properly incorporated into the calculation of the spin susceptibility
of the hole liquid. In general terms, the findings demonstrate how the
interplay between the ferromagnetic RKKY interaction, carrier localization, and
intrinsic antiferromagnetic superexchange affects the ordering temperature and
the saturation value of magnetization in magnetically and electrostatically
disordered systems.Comment: 14 pages, 10 figure
Influence of s,p-d and s-p exchange couplings on exciton splitting in (Zn,Mn)O
This work presents results of near-band gap magnetooptical studies on
(Zn,Mn)O epitaxial layers. We observe excitonic transitions in reflectivity and
photoluminescence, that shift towards higher energies when the Mn concentration
increases and split nonlinearly under the magnetic field. Excitonic shifts are
determined by the s,p-d exchange coupling to magnetic ions, by the
electron-hole s-p exchange, and the spin-orbit interactions. A quantitative
description of the magnetoreflectivity findings indicates that the free
excitons A and B are associated with the Gamma_7 and Gamma_9 valence bands,
respectively, the order reversed as compared to wurtzite GaN. Furthermore, our
results show that the magnitude of the giant exciton splittings, specific to
dilute magnetic semiconductors, is unusual: the magnetoreflectivity data is
described by an effective exchange energy N_0(beta-alpha)=+0.2+/-0.1 eV, what
points to small and positive N_0 beta. It is shown that both the increase of
the gap with x and the small positive value of the exchange energy N_0 beta
corroborate recent theory describing the exchange splitting of the valence band
in a non-perturbative way, suitable for the case of a strong p-d hybridization.Comment: 8 pages, 8 figure
Femtosecond study of the interplay between excitons, trions, and carriers in (Cd,Mn)Te quantum wells
We present an absorption study of the neutral and positively charged exciton
(trion) under the influence of a femtosecond, circularly polarized, resonant
pump pulse. Three populations are involved: free holes, excitons, and trions,
all exhibiting transient spin polarization. In particular, a polarization of
the hole gas is created by the formation of trions. The evolution of these
populations is studied, including the spin flip and trion formation processes.
The contributions of several mechanisms to intensity changes are evaluated,
including phase space filling and spin-dependent screening. We propose a new
explanation of the oscillator strength stealing phenomena observed in p-doped
quantum wells, based on the screening of neutral excitons by charge carriers.
We have also found that binding heavy holes into charged excitons excludes them
from the interaction with the rest of the system, so that oscillator strength
stealing is partially blockedComment: 4 pages, 4 figure
Exchange bias in GeMn nanocolumns: the role of surface oxidation
We report on the exchange biasing of self-assembled ferromagnetic GeMn
nanocolumns by GeMn-oxide caps. The x-ray absorption spectroscopy analysis of
this surface oxide shows a multiplet fine structure that is typical of the Mn2+
valence state in MnO. A magnetization hysteresis shift |HE|~100 Oe and a
coercivity enhancement of about 70 Oe have been obtained upon cooling (300-5 K)
in a magnetic field as low as 0.25 T. This exchange bias is attributed to the
interface coupling between the ferromagnetic nanocolumns and the
antiferromagnetic MnO-like caps. The effect enhancement is achieved by
depositing a MnO layer on the GeMn nanocolumns.Comment: 7 pages, 5 figure
P2Y Receptors Sensitize Mouse and Human Colonic Nociceptors
Activation of visceral nociceptors by inflammatory mediators contributes to visceral hypersensitivity and abdominal pain associated with many gastrointestinal disorders. Purine and pyrimidine nucleotides (e.g., ATP and UTP) are strongly implicated in this process following their release from epithelial cells during mechanical stimulation of the gut, and from immune cells during inflammation. Actions of ATP are mediated through both ionotropic P2X receptors and metabotropic P2Y receptors. P2X receptor activation causes excitation of visceral afferents; however, the impact of P2Y receptor activation on visceral afferents innervating the gut is unclear. Here we investigate the effects of stimulating P2Y receptors in isolated mouse colonic sensory neurons, and visceral nociceptor fibers in mouse and human nerve-gut preparations. Additionally, we investigate the role of Na(v)1.9 in mediating murine responses. The application of UTP (P2Y(2) and P2Y(4) agonist) sensitized colonic sensory neurons by increasing action potential firing to current injection and depolarizing the membrane potential. The application of ADP (P2Y(1), P2Y(12), and P2Y(13) agonist) also increased action potential firing, an effect blocked by the selective P2Y(1) receptor antagonist MRS2500. UTP or ADP stimulated afferents, including mouse and human visceral nociceptors, in nerve-gut preparations. P2Y(1) and P2Y(2) transcripts were detected in 80% and 56% of retrogradely labeled colonic neurons, respectively. Na(v)1.9 transcripts colocalized in 86% of P2Y(1)-positive and 100% of P2Y(2)-positive colonic neurons, consistent with reduced afferent fiber responses to UTP and ADP in Na(v)1.9(−/−) mice. These data demonstrate that P2Y receptor activation stimulates mouse and human visceral nociceptors, highlighting P2Y-dependent mechanisms in the generation of visceral pain during gastrointestinal disease. SIGNIFICANCE STATEMENT Chronic visceral pain is a debilitating symptom of many gastrointestinal disorders. The activation of pain-sensing nerves located in the bowel wall and their sensitization to physiological stimuli, including bowel movements, underpins the development of such pain, and is associated with mediators released during disease. This work addresses the unstudied role of purine and pyrimidine nucleotides in modulating colonic nociceptors via P2Y receptors using a combination of electrophysiological recordings from human ex vivo samples and a detailed functional study in the mouse. This is the first report to identify colonic purinergic signaling as a function of P2Y receptor activation, in addition to established P2X receptor activity, and the results contribute to our understanding of the development of visceral pain during gastrointestinal disease
A lattice gas model of II-VI(001) semiconductor surfaces
We introduce an anisotropic two-dimensional lattice gas model of metal
terminated II-IV(001) seminconductor surfaces. Important properties of this
class of materials are represented by effective NN and NNN interactions, which
result in the competition of two vacancy structures on the surface. We
demonstrate that the experimentally observed c(2x2)-(2x1) transition of the
CdTe(001) surface can be understood as a phase transition in thermal
equilbrium. The model is studied by means of transfer matrix and Monte Carlo
techniques. The analysis shows that the small energy difference of the
competing reconstructions determines to a large extent the nature of the
different phases. Possible implications for further experimental research are
discussed.Comment: 7 pages, 2 figure
Nonlinear excitations in CsNiF3 in magnetic fields perpendicular to the easy plane
Experimental and numerical studies of the magnetic field dependence of the
specific heat and magnetization of single crystals of CsNiF3 have been
performed at 2.4 K, 2.9 K, and 4.2 K in magnetic fields up to 9 T oriented
perpendicular to the easy plane. The experimental results confirm the presence
of the theoretically predicted double peak structure in the specific heat
arising from the formation of nonlinear spin modes. The demagnetizing effects
are found to be negligible, and the overall agreement between the data and
numerical predictions is better than reported for the case when the magnetic
field was oriented in the easy plane. Demagnetizing effects might play a role
in generating the difference observed between theory and experiment in previous
work analyzing the excess specific heat using the sine-Gordon model.Comment: 6 pages, 5 figures, submitted to Phys. Rev.
Engineering of quantum dot photon sources via electro-elastic fields
The possibility to generate and manipulate non-classical light using the
tools of mature semiconductor technology carries great promise for the
implementation of quantum communication science. This is indeed one of the main
driving forces behind ongoing research on the study of semiconductor quantum
dots. Often referred to as artificial atoms, quantum dots can generate single
and entangled photons on demand and, unlike their natural counterpart, can be
easily integrated into well-established optoelectronic devices. However, the
inherent random nature of the quantum dot growth processes results in a lack of
control of their emission properties. This represents a major roadblock towards
the exploitation of these quantum emitters in the foreseen applications. This
chapter describes a novel class of quantum dot devices that uses the combined
action of strain and electric fields to reshape the emission properties of
single quantum dots. The resulting electro-elastic fields allow for control of
emission and binding energies, charge states, and energy level splittings and
are suitable to correct for the quantum dot structural asymmetries that usually
prevent these semiconductor nanostructures from emitting polarization-entangled
photons. Key experiments in this field are presented and future directions are
discussed.Comment: to appear as a book chapter in a compilation "Engineering the
Atom-Photon Interaction" published by Springer in 2015, edited by A.
Predojevic and M. W. Mitchel
Pain Severity Correlates With Biopsy-Mediated Colonic Afferent Activation But Not Psychological Scores in Patients With IBS-D.
INTRODUCTION: Despite heterogeneity, an increased prevalence of psychological comorbidity and an altered pronociceptive gut microenvironment have repeatedly emerged as causative pathophysiology in patients with irritable bowel syndrome (IBS). Our aim was to study these phenomena by comparing gut-related symptoms, psychological scores, and biopsy samples generated from a detailed diarrhea-predominant IBS patient (IBS-D) cohort before their entry into a previously reported clinical trial. METHODS: Data were generated from 42 patients with IBS-D who completed a daily 2-week bowel symptom diary, the Hospital Anxiety and Depression score, and the Patient Health Questionnaire-12 Somatic Symptom score and underwent unprepared flexible sigmoidoscopy. Sigmoid mucosal biopsies were separately evaluated using immunohistochemistry and culture supernatants to determine cellularity, mediator levels, and ability to stimulate colonic afferent activity. RESULTS: Pain severity scores significantly correlated with the daily duration of pain (r = 0.67, P < 0.00001), urgency (r = 0.57, P < 0.0005), and bloating (r = 0.39, P < 0.05), but not with psychological symptom scores for anxiety, depression, or somatization. Furthermore, pain severity scores from individual patients with IBS-D were significantly correlated (r = 0.40, P < 0.008) with stimulation of colonic afferent activation mediated by their biopsy supernatant, but not with biopsy cell counts nor measured mediator levels. DISCUSSION: Peripheral pronociceptive changes in the bowel seem more important than psychological factors in determining pain severity within a tightly phenotyped cohort of patients with IBS-D. No individual mediator was identified as the cause of this pronociceptive change, suggesting that nerve targeting therapeutic approaches may be more successful than mediator-driven approaches for the treatment of pain in IBS-D
- …
