443 research outputs found

    Velocity fluctuations and hydrodynamic diffusion in sedimentation

    Get PDF
    We study non-equilibrium velocity fluctuations in a model for the sedimentation of non-Brownian particles experiencing long-range hydrodynamic interactions. The complex behavior of these fluctuations, the outcome of the collective dynamics of the particles, exhibits many of the features observed in sedimentation experiments. In addition, our model predicts a final relaxation to an anisotropic (hydrodynamic) diffusive state that could be observed in experiments performed over longer time ranges.Comment: 7 pages, 5 EPS figures, EPL styl

    The Mean-Field Limit for Solid Particles in a Navier-Stokes Flow

    Full text link
    We propose a mathematical derivation of Brinkman's force for a cloud of particles immersed in an incompressible fluid. Our starting point is the Stokes or steady Navier-Stokes equations set in a bounded domain with the disjoint union of N balls of radius 1/N removed, and with a no-slip boundary condition for the fluid at the surface of each ball. The large N limit of the fluid velocity field is governed by the same (Navier-)Stokes equations in the whole domain, with an additional term (Brinkman's force) that is (minus) the total drag force exerted by the fluid on the particle system. This can be seen as a generalization of Allaire's result in [Arch. Rational Mech. Analysis 113 (1991), 209-259] who treated the case of motionless, periodically distributed balls. Our proof is based on slightly simpler, though similar homogenization techniques, except that we avoid the periodicity assumption and use instead the phase-space empirical measure for the particle system. Similar equations are used for describing the fluid phase in various models for sprays

    Level Set Approach to Reversible Epitaxial Growth

    Full text link
    We generalize the level set approach to model epitaxial growth to include thermal detachment of atoms from island edges. This means that islands do not always grow and island dissociation can occur. We make no assumptions about a critical nucleus. Excellent quantitative agreement is obtained with kinetic Monte Carlo simulations for island densities and island size distributions in the submonolayer regime.Comment: 7 pages, 9 figure

    On Strong Convergence to Equilibrium for the Boltzmann Equation with Soft Potentials

    Full text link
    The paper concerns L1L^1- convergence to equilibrium for weak solutions of the spatially homogeneous Boltzmann Equation for soft potentials (-4\le \gm<0), with and without angular cutoff. We prove the time-averaged L1L^1-convergence to equilibrium for all weak solutions whose initial data have finite entropy and finite moments up to order greater than 2+|\gm|. For the usual L1L^1-convergence we prove that the convergence rate can be controlled from below by the initial energy tails, and hence, for initial data with long energy tails, the convergence can be arbitrarily slow. We also show that under the integrable angular cutoff on the collision kernel with -1\le \gm<0, there are algebraic upper and lower bounds on the rate of L1L^1-convergence to equilibrium. Our methods of proof are based on entropy inequalities and moment estimates.Comment: This version contains a strengthened theorem 3, on rate of convergence, considerably relaxing the hypotheses on the initial data, and introducing a new method for avoiding use of poitwise lower bounds in applications of entropy production to convergence problem

    Global Hilbert Expansion for the Vlasov-Poisson-Boltzmann System

    Full text link
    We study the Hilbert expansion for small Knudsen number ε\varepsilon for the Vlasov-Boltzmann-Poisson system for an electron gas. The zeroth order term takes the form of local Maxwellian: $ F_{0}(t,x,v)=\frac{\rho_{0}(t,x)}{(2\pi \theta_{0}(t,x))^{3/2}} e^{-|v-u_{0}(t,x)|^{2}/2\theta_{0}(t,x)},\text{\ }\theta_{0}(t,x)=K\rho_{0}^{2/3}(t,x).OurmainresultstatesthatiftheHilbertexpansionisvalidat Our main result states that if the Hilbert expansion is valid at t=0forwellpreparedsmallinitialdatawithirrotationalvelocity for well-prepared small initial data with irrotational velocity u_0,thenitisvalidfor, then it is valid for 0\leq t\leq \varepsilon ^{-{1/2}\frac{2k-3}{2k-2}},where where \rho_{0}(t,x)and and u_{0}(t,x)satisfytheEulerPoissonsystemformonatomicgas satisfy the Euler-Poisson system for monatomic gas \gamma=5/3$

    On the well-posedness for the Ideal MHD equations in the Triebel-Lizorkin spaces

    Full text link
    In this paper, we prove the local well-posedness for the Ideal MHD equations in the Triebel-Lizorkin spaces and obtain blow-up criterion of smooth solutions. Specially, we fill a gap in a step of the proof of the local well-posedness part for the incompressible Euler equation in \cite{Chae1}.Comment: 16page

    Hilbert Expansion from the Boltzmann equation to relativistic Fluids

    Get PDF
    We study the local-in-time hydrodynamic limit of the relativistic Boltzmann equation using a Hilbert expansion. More specifically, we prove the existence of local solutions to the relativistic Boltzmann equation that are nearby the local relativistic Maxwellian constructed from a class of solutions to the relativistic Euler equations that includes a large subclass of near-constant, non-vacuum fluid states. In particular, for small Knudsen number, these solutions to the relativistic Boltzmann equation have dynamics that are effectively captured by corresponding solutions to the relativistic Euler equations.Comment: 50 page

    Optimal time decay of the non cut-off Boltzmann equation in the whole space

    Full text link
    In this paper we study the large-time behavior of perturbative classical solutions to the hard and soft potential Boltzmann equation without the angular cut-off assumption in the whole space \threed_x with \DgE. We use the existence theory of global in time nearby Maxwellian solutions from \cite{gsNonCutA,gsNonCut0}. It has been a longstanding open problem to determine the large time decay rates for the soft potential Boltzmann equation in the whole space, with or without the angular cut-off assumption \cite{MR677262,MR2847536}. For perturbative initial data, we prove that solutions converge to the global Maxwellian with the optimal large-time decay rate of O(t^{-\frac{\Ndim}{2}+\frac{\Ndim}{2r}}) in the L^2_\vel(L^r_x)-norm for any 2r2\leq r\leq \infty.Comment: 31 pages, final version to appear in KR

    The Moment Guided Monte Carlo method for the Boltzmann equation

    Full text link
    In this work we propose a generalization of the Moment Guided Monte Carlo method developed in [11]. This approach permits to reduce the variance of the particle methods through a matching with a set of suitable macroscopic moment equations. In order to guarantee that the moment equations provide the correct solutions, they are coupled to the kinetic equation through a non equilibrium term. Here, at the contrary to the previous work in which we considered the simplified BGK operator, we deal with the full Boltzmann operator. Moreover, we introduce an hybrid setting which permits to entirely remove the resolution of the kinetic equation in the limit of infinite number of collisions and to consider only the solution of the compressible Euler equation. This modification additionally reduce the statistical error with respect to our previous work and permits to perform simulations of non equilibrium gases using only a few number of particles. We show at the end of the paper several numerical tests which prove the efficiency and the low level of numerical noise of the method.Comment: arXiv admin note: text overlap with arXiv:0908.026
    corecore