443 research outputs found
Velocity fluctuations and hydrodynamic diffusion in sedimentation
We study non-equilibrium velocity fluctuations in a model for the
sedimentation of non-Brownian particles experiencing long-range hydrodynamic
interactions. The complex behavior of these fluctuations, the outcome of the
collective dynamics of the particles, exhibits many of the features observed in
sedimentation experiments. In addition, our model predicts a final relaxation
to an anisotropic (hydrodynamic) diffusive state that could be observed in
experiments performed over longer time ranges.Comment: 7 pages, 5 EPS figures, EPL styl
The Mean-Field Limit for Solid Particles in a Navier-Stokes Flow
We propose a mathematical derivation of Brinkman's force for a cloud of
particles immersed in an incompressible fluid. Our starting point is the Stokes
or steady Navier-Stokes equations set in a bounded domain with the disjoint
union of N balls of radius 1/N removed, and with a no-slip boundary condition
for the fluid at the surface of each ball. The large N limit of the fluid
velocity field is governed by the same (Navier-)Stokes equations in the whole
domain, with an additional term (Brinkman's force) that is (minus) the total
drag force exerted by the fluid on the particle system. This can be seen as a
generalization of Allaire's result in [Arch. Rational Mech. Analysis 113
(1991), 209-259] who treated the case of motionless, periodically distributed
balls. Our proof is based on slightly simpler, though similar homogenization
techniques, except that we avoid the periodicity assumption and use instead the
phase-space empirical measure for the particle system. Similar equations are
used for describing the fluid phase in various models for sprays
Level Set Approach to Reversible Epitaxial Growth
We generalize the level set approach to model epitaxial growth to include
thermal detachment of atoms from island edges. This means that islands do not
always grow and island dissociation can occur. We make no assumptions about a
critical nucleus. Excellent quantitative agreement is obtained with kinetic
Monte Carlo simulations for island densities and island size distributions in
the submonolayer regime.Comment: 7 pages, 9 figure
On Strong Convergence to Equilibrium for the Boltzmann Equation with Soft Potentials
The paper concerns - convergence to equilibrium for weak solutions of
the spatially homogeneous Boltzmann Equation for soft potentials (-4\le
\gm<0), with and without angular cutoff. We prove the time-averaged
-convergence to equilibrium for all weak solutions whose initial data have
finite entropy and finite moments up to order greater than 2+|\gm|. For the
usual -convergence we prove that the convergence rate can be controlled
from below by the initial energy tails, and hence, for initial data with long
energy tails, the convergence can be arbitrarily slow. We also show that under
the integrable angular cutoff on the collision kernel with -1\le \gm<0, there
are algebraic upper and lower bounds on the rate of -convergence to
equilibrium. Our methods of proof are based on entropy inequalities and moment
estimates.Comment: This version contains a strengthened theorem 3, on rate of
convergence, considerably relaxing the hypotheses on the initial data, and
introducing a new method for avoiding use of poitwise lower bounds in
applications of entropy production to convergence problem
Global Hilbert Expansion for the Vlasov-Poisson-Boltzmann System
We study the Hilbert expansion for small Knudsen number for the
Vlasov-Boltzmann-Poisson system for an electron gas. The zeroth order term
takes the form of local Maxwellian: $ F_{0}(t,x,v)=\frac{\rho_{0}(t,x)}{(2\pi
\theta_{0}(t,x))^{3/2}} e^{-|v-u_{0}(t,x)|^{2}/2\theta_{0}(t,x)},\text{\
}\theta_{0}(t,x)=K\rho_{0}^{2/3}(t,x).t=0u_00\leq t\leq \varepsilon
^{-{1/2}\frac{2k-3}{2k-2}},\rho_{0}(t,x) u_{0}(t,x)\gamma=5/3$
On the well-posedness for the Ideal MHD equations in the Triebel-Lizorkin spaces
In this paper, we prove the local well-posedness for the Ideal MHD equations
in the Triebel-Lizorkin spaces and obtain blow-up criterion of smooth
solutions. Specially, we fill a gap in a step of the proof of the local
well-posedness part for the incompressible Euler equation in \cite{Chae1}.Comment: 16page
Hilbert Expansion from the Boltzmann equation to relativistic Fluids
We study the local-in-time hydrodynamic limit of the relativistic Boltzmann
equation using a Hilbert expansion. More specifically, we prove the existence
of local solutions to the relativistic Boltzmann equation that are nearby the
local relativistic Maxwellian constructed from a class of solutions to the
relativistic Euler equations that includes a large subclass of near-constant,
non-vacuum fluid states. In particular, for small Knudsen number, these
solutions to the relativistic Boltzmann equation have dynamics that are
effectively captured by corresponding solutions to the relativistic Euler
equations.Comment: 50 page
Optimal time decay of the non cut-off Boltzmann equation in the whole space
In this paper we study the large-time behavior of perturbative classical
solutions to the hard and soft potential Boltzmann equation without the angular
cut-off assumption in the whole space \threed_x with \DgE. We use the
existence theory of global in time nearby Maxwellian solutions from
\cite{gsNonCutA,gsNonCut0}. It has been a longstanding open problem to
determine the large time decay rates for the soft potential Boltzmann equation
in the whole space, with or without the angular cut-off assumption
\cite{MR677262,MR2847536}. For perturbative initial data, we prove that
solutions converge to the global Maxwellian with the optimal large-time decay
rate of O(t^{-\frac{\Ndim}{2}+\frac{\Ndim}{2r}}) in the
L^2_\vel(L^r_x)-norm for any .Comment: 31 pages, final version to appear in KR
The Moment Guided Monte Carlo method for the Boltzmann equation
In this work we propose a generalization of the Moment Guided Monte Carlo
method developed in [11]. This approach permits to reduce the variance of the
particle methods through a matching with a set of suitable macroscopic moment
equations. In order to guarantee that the moment equations provide the correct
solutions, they are coupled to the kinetic equation through a non equilibrium
term. Here, at the contrary to the previous work in which we considered the
simplified BGK operator, we deal with the full Boltzmann operator. Moreover, we
introduce an hybrid setting which permits to entirely remove the resolution of
the kinetic equation in the limit of infinite number of collisions and to
consider only the solution of the compressible Euler equation. This
modification additionally reduce the statistical error with respect to our
previous work and permits to perform simulations of non equilibrium gases using
only a few number of particles. We show at the end of the paper several
numerical tests which prove the efficiency and the low level of numerical noise
of the method.Comment: arXiv admin note: text overlap with arXiv:0908.026
- …
