2,175 research outputs found
Colour and stellar population gradients in galaxies
We discuss the colour, age and metallicity gradients in a wide sample of
local SDSS early- and late-type galaxies. From the fitting of stellar
population models we find that metallicity is the main driver of colour
gradients and the age in the central regions is a dominant parameter which
rules the scatter in both metallicity and age gradients. We find a consistency
with independent observations and a set of simulations. From the comparison
with simulations and theoretical considerations we are able to depict a general
picture of a formation scenario.Comment: 4 pages, 4 figures. Proceedings of 54th Congresso Nazionale della
SAIt, Napoli 4-7 May 201
MOND and IMF variations in early-type galaxies from ATLAS3D
MOdified Newtonian dynamics (MOND) represents a phenomenological alternative
to dark matter (DM) for the missing mass problem in galaxies and clusters of
galaxies. We analyze the central regions of a local sample of
early-type galaxies from the survey, to see if the data can be
reproduced without recourse to DM. We estimate dynamical masses in the MOND
context through Jeans analysis, and compare to stellar masses
from stellar population synthesis. We find that the observed stellar
mass--velocity dispersion relation is steeper than expected assuming MOND with
a fixed stellar initial mass function (IMF) and a standard value for the
acceleration parameter . Turning from the space of observables to
model space, a) fixing the IMF, a universal value for cannot be
fitted, while, b) fixing and leaving the IMF free to vary, we find
that it is "lighter" (Chabrier-like) for low-dispersion galaxies, and "heavier"
(Salpeter-like) for high dispersions. This MOND-based trend matches inferences
from Newtonian dynamics with DM, and from detailed analysis of spectral
absorption lines, adding to the converging lines of evidence for a
systematically-varying IMF.Comment: 6 pages, 3 figures, accepted for publication on MNRAS Letters, typos
corrected and further references adde
Dark matter scaling relations in intermediate z haloes
We investigate scaling relations between the dark matter (DM) halo model parameters for a sample of intermediate-redshift early-type galaxies (ETGs) resorting to a combined analysis of Einstein radii and aperture velocity dispersions. Modelling the dark halo with a Navarro-Frenk-White profile and assuming a Salpeter initial mass function (IMF) to estimate stellar masses, we find that the column density and the Newtonian acceleration within the halo characteristic radius rs and effective radius Reff are not universal quantities, but correlate with the luminosity LV, the stellar mass M★ and the halo mass M200, contrary to recent claims in the literature. We finally discuss a tight correlation among the DM mass MDM(Reff) within the effective radius Reff, the stellar mass M★(Reff) and Reff itself. The slopes of the scaling relations discussed here strongly depend, however, on the DM halo model and the IMF adopted so that these ingredients have to be better constrained in order to draw definitive conclusions on the DM scaling relations for ETG
Cosmology and the Hubble Constant: On the Megamaser Cosmology Project (MCP)
The Hubble constant Ho describes not only the expansion of local space at
redshift z ~ 0, but is also a fundamental parameter determining the evolution
of the universe. Recent measurements of Ho anchored on Cepheid observations
have reached a precision of several percent. However, this problem is so
important that confirmation from several methods is needed to better constrain
Ho and, with it, dark energy and the curvature of space. A particularly direct
method involves the determination of distances to local galaxies far enough to
be part of the Hubble flow through water vapor (H2O) masers orbiting nuclear
supermassive black holes. The goal of this article is to describe the relevance
of Ho with respect to fundamental cosmological questions and to summarize
recent progress of the the `Megamaser Cosmology Project' (MCP) related to the
Hubble constant.Comment: 10 pages, 7 postscript figures (8 ps files), IAU Symposium 287, uses
iaus.cl
Dynamical and gravitational lensing properties of a new phenomenological model of elliptical galaxies
Recent observations of the line of sight velocity profile of elliptical galaxies have furnished controversial results with some works favouring the presence of a large amount of dark matter in the outer regions and others arguing in favour of no dark matter at all. In order to shed new light on this controversy, we propose here a new phenomenological description of the total mass profile of galaxies. Under the hypothesis of spherical symmetry, we assume a double power-law expression for the global M/L ratio Upsilon(r)= Upsilon_0(r/r_0) ^{alpha}(1+r/r_0)^{beta}. In particular, Upsilon propto r^{alpha} for r/r_01 so that alpha1), Upsilon propto r^{alpha+beta} thus showing that models with alpha+beta=0 have an asymptotically constant M/L ratio. A wide range of possibilities is obtained by varying the slope parameters in the range we determine on the basis of physical considerations. Choosing a general expression for the luminosity density profile j(r), we work out an effective galaxy model that accounts for all the phenomenology observed in real elliptical galaxies. We derive the main dynamics and lensing properties of such an effective model. We analyze a general class of models, able to take into account different dynamical trends. We are able to obtain analytical expressions for the main dynamical and lensing quantities. We show that constraining the values of alpha+beta makes it possible to analyze the problem of the dark matter in elliptical galaxies. Indeed, positive values of alpha+beta would be a strong evidence for dark matter. Finally we indicate possible future approaches in order to face the observational data, in particular using velocity dispersion profiles and lensed quasar events
Secondary infall model and dark matter scaling relations in intermediate-redshift early-type galaxies
Scaling relations among dark matter (DM) and stellar quantities are a valuable tool to constrain formation scenarios and the evolution of galactic structures. However, most of the DM properties are actually not directly measured, but derived through model-dependent mass-mapping procedures. It is therefore crucial to adopt theoretically and observationally well founded models. We use here an updated version of the secondary infall model (SIM) to predict the halo density profile, taking into account the effects of angular momentum, dissipative friction and baryons collapse. The resulting family of halo profiles depends only on one parameter, the virial mass, and nicely fits the projected mass and aperture velocity dispersion of a sample of intermediate redshift lens galaxies. We derive DM-related quantities (namely the column density and the Newtonian acceleration) and investigate their correlations with stellar mass, luminosity, effective radius and virial mas
Secondary infall model and dark matter scaling relations in intermediate redshift early - type galaxies
Scaling relations among dark matter (DM) and stellar quantities are a
valuable tool to constrain formation scenarios and the evolution of galactic
structures. However, most of the DM properties are actually not directly
measured, but derived through model dependent mass mapping procedures. It is
therefore crucial to adopt theoretically and observationally well founded
models. We use here an updated version of the secondary infall model (SIM) to
predict the halo density profile, taking into account the effects of angular
momentum, dissipative friction and baryons collapse. The resulting family of
halo profiles depends on one parameter only, the virial mass, and nicely fits
the projected mass and aperture velocity dispersion of a sample of intermediate
redshift lens galaxies. We derive DM related quantities (namely the column
density and the Newtonian acceleration) and investigate their correlations with
stellar mass, luminosity, effective radius and virial mass.Comment: 15 pages, 3 figures, 2 tables, accepted for publication on MNRA
Quinstant Dark Energy Predictions for Structure Formation
We explore the predictions of a class of dark energy models, quinstant dark
energy, concerning the structure formation in the Universe, both in the linear
and non-linear regimes. Quinstant dark energy is considered to be formed by
quintessence and a negative cosmological constant. We conclude that these
models give good predictions for structure formation in the linear regime, but
fail to do so in the non-linear one, for redshifts larger than one.Comment: 9 pages, 14 figures, "Accepted for publication in Astrophysics &
Space Science
Stellar mass-to-light ratio gradients in galaxies: correlations with mass
We analyse the stellar mass-to-light ratio (M/L) gradients in a large sample of local galaxies taken from the Sloan Digital Sky Survey, spanning a wide range of stellar masses and morphological types. As suggested by the well-known relationship between M/L values and colours, we show that M/L gradients are strongly correlated with colour gradients, which we trace to the effects of age variations. Stellar M/L gradients generally follow patterns of variation with stellar mass and galaxy type that were previously found for colour and metallicity gradients. In late-type galaxies M/L gradients are negative, steepening with increasing mass. In early-type galaxies M/L gradients are shallower, while presenting a twofold trend: they decrease with mass up to a characteristic mass of and increase at larger masses. We compare our findings with other analyses and discuss some implications for galaxy formation and for dark matter estimate
Skylab S-193 Radscat microwave measurements of sea surface winds
The S-193 Radscat made extensive measurements of many sea conditions. Measurements were taken in a tropical hurricane (Ava), a tropical storm (Christine), and in portions of extratropical cyclones. Approximately 200 scans of ocean data at 105 kilometer spacings were taken during the first two Skylab missions and another 200 during the final mission when the characteristics of the measurements changed due to damage of the antenna. Backscatter with four transmit/receive polarization combinations and emissions with horizontal and vertical receive polarizations were measured. Other surface parameters investigated for correlation with the measurements included sea temperature, air/sea temperature difference, and gravity-wave spectrum. Methods were developed to correct the microwave measurements for atmospheric effects. The radiometric data were corrected accurately for clear sky and light cloud conditions only. The radiometer measurements were used to recover the surface scattering characteristics for all atmospheric conditions excluding rain. The radiometer measurements also detected the presence of rain which signaled when the scattering measurement should not be used for surface wind estimation. Regression analysis was used to determine empirically the relation between surface parameters and the microwave measurements, after correction for atmospheric effects. Results indicate a relationship approaching square-law at 50 deg between differential scattering coefficient and wind speed with horizontally polarized scattering data showing slightly more sensitivity to wind speed than vertically polarized data
- …
