1,609 research outputs found

    Bacterial endophyte communities in the foliage of coast redwood and giant sequoia

    Get PDF
    The endophytic bacterial microbiome, with an emerging role in plant nutrient acquisition and stress tolerance, is much less studied in natural plant populations than in agricultural crops. In a previous study, we found consistent associations between trees in the pine family and acetic acid bacteria (AAB) occurring at high relative abundance inside their needles. Our objective here was to determine if that pattern may be general to conifers, or alternatively, is more likely restricted to pines, or conifers growing in nutrient limited and exposed environments. We used 16S rRNA pyrosequencing to characterize the foliar endophyte communities of two conifers in the Cupressaceae family: Two coast redwood (Sequoia sempervirens) populations and one giant sequoia (Sequoiadendron giganteum) population were sampled. Similar to the pines, the endophyte communities of the giant trees were dominated by Proteobacteria, Firmicutes, Acidobacteria, and Actinobacteria. However, although some major OTUs occurred at a high relative abundance of 10-40% in multiple samples, no specific group of bacteria dominated the endophyte community to the extent previously observed in high-elevation pines. Several of the dominating bacterial groups in the coast redwood and giant sequoia foliage (e.g. Bacillus, Burkholderia, Actinomycetes) are known for disease- and pest suppression, raising the possibility that the endophytic microbiome protects the giant trees against biotic stress. Many of the most common and abundant OTUs in our dataset were most similar to 16S rRNA sequences from bacteria isolated from lichens or arctic plants. For example, an OTU belonging to the uncultured Rhizobiales LAR1 lineage, which is commonly associated with lichens, was observed at high relative abundance in many of the coast redwood samples. The taxa shared between the giant trees, arctic plants, and lichens may be part of a broadly defined endophyte microbiome common to temperate, boreal, and tundra ecosystems

    A resonant feature near the Perseus arm revealed by red clump stars

    Full text link
    We investigate the extinction together with the radial velocity dispersion and distribution of red clump stars in the anti-center direction using spectra obtained with Hectospec on the MMT. We find that extinction peaks at Galactocentric radii of about 9.5 and 12.5 kpc, right in front of the locations of the Perseus and Outer arms and in line with the relative position of dust and stars in external spiral galaxies. The radial velocity dispersion peaks around 10kpc, which coincides with the location of the Perseus arm, yields an estimated arm-interarm density contrast of 1.3-1.5 and is in agreement with previous studies. Finally, we discover that the radial velocity distribution bifurcates around 10-11 kpc into two peaks at +27 km/s and -4 km/s. This seems to be naturally explained by the presence of the outer Lindblad resonance of the Galactic bar, but further observations will be needed to understand if the corotation resonance of the spirals arms also plays a role.Comment: 8 pages, 2 figures, accepted for publication in ApJ

    GALEX J201337.6+092801: The lowest gravity subdwarf B pulsator

    Full text link
    We present the recent discovery of a new subdwarf B variable (sdBV), with an exceptionally low surface gravity. Our spectroscopy of J20136+0928 places it at Teff = 32100 +/- 500, log(g) = 5.15 +/- 0.10, and log(He/H) = -2.8 +/- 0.1. With a magnitude of B = 12.0, it is the second brightest V361 Hya star ever found. Photometry from three different observatories reveals a temporal spectrum with eleven clearly detected periods in the range 376 to 566 s, and at least five more close to our detection limit. These periods are unusually long for the V361 Hya class of short-period sdBV pulsators, but not unreasonable for p- and g-modes close to the radial fundamental, given its low surface gravity. Of the ~50 short period sdB pulsators known to date, only a single one has been found to have comparable spectroscopic parameters to J20136+0928. This is the enigmatic high-amplitude pulsator V338 Ser, and we conclude that J20136+0928 is the second example of this rare subclass of sdB pulsators located well above the canonical extreme horizontal branch in the HR diagram.Comment: 5 pages, accepted for publication in ApJ Letter

    The regulatory subunit of PKA-I remains partially structured and undergoes β-aggregation upon thermal denaturation

    Get PDF
    Background: The regulatory subunit (R) of cAMP-dependent protein kinase (PKA) is a modular flexible protein that responds with large conformational changes to the binding of the effector cAMP. Considering its highly dynamic nature, the protein is rather stable. We studied the thermal denaturation of full-length RIα and a truncated RIα(92-381) that contains the tandem cyclic nucleotide binding (CNB) domains A and B. Methodology/Principal Findings: As revealed by circular dichroism (CD) and differential scanning calorimetry, both RIα proteins contain significant residual structure in the heat-denatured state. As evidenced by CD, the predominantly α-helical spectrum at 25°C with double negative peaks at 209 and 222 nm changes to a spectrum with a single negative peak at 212-216 nm, characteristic of β-structure. A similar α→β transition occurs at higher temperature in the presence of cAMP. Thioflavin T fluorescence and atomic force microscopy studies support the notion that the structural transition is associated with cross-β-intermolecular aggregation and formation of non-fibrillar oligomers. Conclusions/Significance: Thermal denaturation of RIα leads to partial loss of native packing with exposure of aggregation-prone motifs, such as the B' helices in the phosphate-binding cassettes of both CNB domains. The topology of the β-sandwiches in these domains favors inter-molecular β-aggregation, which is suppressed in the ligand-bound states of RIα under physiological conditions. Moreover, our results reveal that the CNB domains persist as structural cores through heat-denaturation. © 2011 Dao et al

    Should I stay or should I go? Sibling effects in household formation

    Get PDF
    This paper analyzes peer effects among siblings in the decision to leave parental home. Estimating peer effects is challenging because of problems of refection, endogenous group formation, and correlated unobservables. We overcome these issues using the exogenous variation in siblings' household formation implied by the eligibility rules for a Spanish rental subsidy. Our results show that sibling effects are negative and that these effects can be explained by the presence of old or ill parents. Sibling effects turn positive from older to younger close-in-age siblings, when imitation is more likely to prevail. Our findings indicate that policy makers who aim at fostering household formation should target the household rather than the individual and combine policies for young adults with policies for the elderly
    corecore