1,609 research outputs found
Bacterial endophyte communities in the foliage of coast redwood and giant sequoia
The endophytic bacterial microbiome, with an emerging role in plant nutrient acquisition and stress tolerance, is much less studied in natural plant populations than in agricultural crops. In a previous study, we found consistent associations between trees in the pine family and acetic acid bacteria (AAB) occurring at high relative abundance inside their needles. Our objective here was to determine if that pattern may be general to conifers, or alternatively, is more likely restricted to pines, or conifers growing in nutrient limited and exposed environments. We used 16S rRNA pyrosequencing to characterize the foliar endophyte communities of two conifers in the Cupressaceae family: Two coast redwood (Sequoia sempervirens) populations and one giant sequoia (Sequoiadendron giganteum) population were sampled. Similar to the pines, the endophyte communities of the giant trees were dominated by Proteobacteria, Firmicutes, Acidobacteria, and Actinobacteria. However, although some major OTUs occurred at a high relative abundance of 10-40% in multiple samples, no specific group of bacteria dominated the endophyte community to the extent previously observed in high-elevation pines. Several of the dominating bacterial groups in the coast redwood and giant sequoia foliage (e.g. Bacillus, Burkholderia, Actinomycetes) are known for disease- and pest suppression, raising the possibility that the endophytic microbiome protects the giant trees against biotic stress. Many of the most common and abundant OTUs in our dataset were most similar to 16S rRNA sequences from bacteria isolated from lichens or arctic plants. For example, an OTU belonging to the uncultured Rhizobiales LAR1 lineage, which is commonly associated with lichens, was observed at high relative abundance in many of the coast redwood samples. The taxa shared between the giant trees, arctic plants, and lichens may be part of a broadly defined endophyte microbiome common to temperate, boreal, and tundra ecosystems
A resonant feature near the Perseus arm revealed by red clump stars
We investigate the extinction together with the radial velocity dispersion
and distribution of red clump stars in the anti-center direction using spectra
obtained with Hectospec on the MMT. We find that extinction peaks at
Galactocentric radii of about 9.5 and 12.5 kpc, right in front of the locations
of the Perseus and Outer arms and in line with the relative position of dust
and stars in external spiral galaxies. The radial velocity dispersion peaks
around 10kpc, which coincides with the location of the Perseus arm, yields an
estimated arm-interarm density contrast of 1.3-1.5 and is in agreement with
previous studies. Finally, we discover that the radial velocity distribution
bifurcates around 10-11 kpc into two peaks at +27 km/s and -4 km/s. This seems
to be naturally explained by the presence of the outer Lindblad resonance of
the Galactic bar, but further observations will be needed to understand if the
corotation resonance of the spirals arms also plays a role.Comment: 8 pages, 2 figures, accepted for publication in ApJ
GALEX J201337.6+092801: The lowest gravity subdwarf B pulsator
We present the recent discovery of a new subdwarf B variable (sdBV), with an
exceptionally low surface gravity. Our spectroscopy of J20136+0928 places it at
Teff = 32100 +/- 500, log(g) = 5.15 +/- 0.10, and log(He/H) = -2.8 +/- 0.1.
With a magnitude of B = 12.0, it is the second brightest V361 Hya star ever
found. Photometry from three different observatories reveals a temporal
spectrum with eleven clearly detected periods in the range 376 to 566 s, and at
least five more close to our detection limit. These periods are unusually long
for the V361 Hya class of short-period sdBV pulsators, but not unreasonable for
p- and g-modes close to the radial fundamental, given its low surface gravity.
Of the ~50 short period sdB pulsators known to date, only a single one has been
found to have comparable spectroscopic parameters to J20136+0928. This is the
enigmatic high-amplitude pulsator V338 Ser, and we conclude that J20136+0928 is
the second example of this rare subclass of sdB pulsators located well above
the canonical extreme horizontal branch in the HR diagram.Comment: 5 pages, accepted for publication in ApJ Letter
The need of continuous focus on improved mentoring of trainees and young investigators in the field of andrology: highlights of current programs and opportunities for the future
Recommended from our members
The PSEN1, p.E318G Variant Increases the Risk of Alzheimer's Disease in APOE-ε4 Carriers
The primary constituents of plaques (Aβ42/Aβ40) and neurofibrillary tangles (tau and phosphorylated forms of tau [ptau]) are the current leading diagnostic and prognostic cerebrospinal fluid (CSF) biomarkers for AD. In this study, we performed deep sequencing of APP, PSEN1, PSEN2, GRN, APOE and MAPT genes in individuals with extreme CSF Aβ42, tau, or ptau levels. One known pathogenic mutation (PSEN1 p.A426P), four high-risk variants for AD (APOE p.L46P, MAPT p.A152T, PSEN2 p.R62H and p.R71W) and nine novel variants were identified. Surprisingly, a coding variant in PSEN1, p.E318G (rs17125721-G) exhibited a significant association with high CSF tau (p = 9.2×10−4) and ptau (p = 1.8×10−3) levels. The association of the p.E318G variant with Aβ deposition was observed in APOE-ε4 allele carriers. Furthermore, we found that in a large case-control series (n = 5,161) individuals who are APOE-ε4 carriers and carry the p.E318G variant are at a risk of developing AD (OR = 10.7, 95% CI = 4.7–24.6) that is similar to APOE-ε4 homozygous (OR = 9.9, 95% CI = 7.2.9–13.6), and double the risk for APOE-ε4 carriers that do not carry p.E318G (OR = 3.9, 95% CI = 3.4–4.4). The p.E318G variant is present in 5.3% (n = 30) of the families from a large clinical series of LOAD families (n = 565) and exhibited a higher frequency in familial LOAD (MAF = 2.5%) than in sporadic LOAD (MAF = 1.6%) (p = 0.02). Additionally, we found that in the presence of at least one APOE-ε4 allele, p.E318G is associated with more Aβ plaques and faster cognitive decline. We demonstrate that the effect of PSEN1, p.E318G on AD susceptibility is largely dependent on an interaction with APOE-ε4 and mediated by an increased burden of Aβ deposition
The regulatory subunit of PKA-I remains partially structured and undergoes β-aggregation upon thermal denaturation
Background: The regulatory subunit (R) of cAMP-dependent protein kinase (PKA) is a modular flexible protein that responds with large conformational changes to the binding of the effector cAMP. Considering its highly dynamic nature, the protein is rather stable. We studied the thermal denaturation of full-length RIα and a truncated RIα(92-381) that contains the tandem cyclic nucleotide binding (CNB) domains A and B. Methodology/Principal Findings: As revealed by circular dichroism (CD) and differential scanning calorimetry, both RIα proteins contain significant residual structure in the heat-denatured state. As evidenced by CD, the predominantly α-helical spectrum at 25°C with double negative peaks at 209 and 222 nm changes to a spectrum with a single negative peak at 212-216 nm, characteristic of β-structure. A similar α→β transition occurs at higher temperature in the presence of cAMP. Thioflavin T fluorescence and atomic force microscopy studies support the notion that the structural transition is associated with cross-β-intermolecular aggregation and formation of non-fibrillar oligomers. Conclusions/Significance: Thermal denaturation of RIα leads to partial loss of native packing with exposure of aggregation-prone motifs, such as the B' helices in the phosphate-binding cassettes of both CNB domains. The topology of the β-sandwiches in these domains favors inter-molecular β-aggregation, which is suppressed in the ligand-bound states of RIα under physiological conditions. Moreover, our results reveal that the CNB domains persist as structural cores through heat-denaturation. © 2011 Dao et al
Recommended from our members
Electronic medical records and genomics (eMERGE) network exploration in cataract: Several new potential susceptibility loci
Purpose Cataract is the leading cause of blindness in the world, and in the United States accounts for approximately 60% of Medicare costs related to vision. The purpose of this study was to identify genetic markers for age-related cataract through a genome-wide association study (GWAS). Methods: In the electronic medical records and genomics (eMERGE) network, we ran an electronic phenotyping algorithm on individuals in each of five sites with electronic medical records linked to DNA biobanks. We performed a GWAS using 530,101 SNPs from the Illumina 660W-Quad in a total of 7,397 individuals (5,503 cases and 1,894 controls). We also performed an age-at-diagnosis case-only analysis. Results: We identified several statistically significant associations with age-related cataract (45 SNPs) as well as age at diagnosis (44 SNPs). The 45 SNPs associated with cataract at p<1×10−5 are in several interesting genes, including ALDOB, MAP3K1, and MEF2C. All have potential biologic relationships with cataracts. Conclusions: This is the first genome-wide association study of age-related cataract, and several regions of interest have been identified. The eMERGE network has pioneered the exploration of genomic associations in biobanks linked to electronic health records, and this study is another example of the utility of such resources. Explorations of age-related cataract including validation and replication of the association results identified herein are needed in future studies
Should I stay or should I go? Sibling effects in household formation
This paper analyzes peer effects among siblings in the decision to leave parental home. Estimating peer effects is challenging because of problems of refection, endogenous group formation, and correlated unobservables. We overcome these issues using the exogenous variation in siblings' household formation implied by the eligibility rules for a Spanish rental subsidy. Our results show that sibling effects are negative and that these effects can be explained by the presence of old or ill parents. Sibling effects turn positive from older to younger close-in-age siblings, when imitation is more likely to prevail. Our findings indicate that policy makers who aim at fostering household formation should target the household rather than the individual and combine policies for young adults with policies for the elderly
- …
