358 research outputs found

    Maximum Edge-Disjoint Paths in kk-sums of Graphs

    Full text link
    We consider the approximability of the maximum edge-disjoint paths problem (MEDP) in undirected graphs, and in particular, the integrality gap of the natural multicommodity flow based relaxation for it. The integrality gap is known to be Ω(n)\Omega(\sqrt{n}) even for planar graphs due to a simple topological obstruction and a major focus, following earlier work, has been understanding the gap if some constant congestion is allowed. In this context, it is natural to ask for which classes of graphs does a constant-factor constant-congestion property hold. It is easy to deduce that for given constant bounds on the approximation and congestion, the class of "nice" graphs is nor-closed. Is the converse true? Does every proper minor-closed family of graphs exhibit a constant factor, constant congestion bound relative to the LP relaxation? We conjecture that the answer is yes. One stumbling block has been that such bounds were not known for bounded treewidth graphs (or even treewidth 3). In this paper we give a polytime algorithm which takes a fractional routing solution in a graph of bounded treewidth and is able to integrally route a constant fraction of the LP solution's value. Note that we do not incur any edge congestion. Previously this was not known even for series parallel graphs which have treewidth 2. The algorithm is based on a more general argument that applies to kk-sums of graphs in some graph family, as long as the graph family has a constant factor, constant congestion bound. We then use this to show that such bounds hold for the class of kk-sums of bounded genus graphs

    The Complexity of Scheduling for p-norms of Flow and Stretch

    Full text link
    We consider computing optimal k-norm preemptive schedules of jobs that arrive over time. In particular, we show that computing the optimal k-norm of flow schedule, is strongly NP-hard for k in (0, 1) and integers k in (1, infinity). Further we show that computing the optimal k-norm of stretch schedule, is strongly NP-hard for k in (0, 1) and integers k in (1, infinity).Comment: Conference version accepted to IPCO 201

    Capacitated Vehicle Routing with Non-Uniform Speeds

    Get PDF
    The capacitated vehicle routing problem (CVRP) involves distributing (identical) items from a depot to a set of demand locations, using a single capacitated vehicle. We study a generalization of this problem to the setting of multiple vehicles having non-uniform speeds (that we call Heterogenous CVRP), and present a constant-factor approximation algorithm. The technical heart of our result lies in achieving a constant approximation to the following TSP variant (called Heterogenous TSP). Given a metric denoting distances between vertices, a depot r containing k vehicles with possibly different speeds, the goal is to find a tour for each vehicle (starting and ending at r), so that every vertex is covered in some tour and the maximum completion time is minimized. This problem is precisely Heterogenous CVRP when vehicles are uncapacitated. The presence of non-uniform speeds introduces difficulties for employing standard tour-splitting techniques. In order to get a better understanding of this technique in our context, we appeal to ideas from the 2-approximation for scheduling in parallel machine of Lenstra et al.. This motivates the introduction of a new approximate MST construction called Level-Prim, which is related to Light Approximate Shortest-path Trees. The last component of our algorithm involves partitioning the Level-Prim tree and matching the resulting parts to vehicles. This decomposition is more subtle than usual since now we need to enforce correlation between the size of the parts and their distances to the depot

    Packing While Traveling: Mixed Integer Programming for a Class of Nonlinear Knapsack Problems

    Full text link
    Packing and vehicle routing problems play an important role in the area of supply chain management. In this paper, we introduce a non-linear knapsack problem that occurs when packing items along a fixed route and taking into account travel time. We investigate constrained and unconstrained versions of the problem and show that both are NP-hard. In order to solve the problems, we provide a pre-processing scheme as well as exact and approximate mixed integer programming (MIP) solutions. Our experimental results show the effectiveness of the MIP solutions and in particular point out that the approximate MIP approach often leads to near optimal results within far less computation time than the exact approach

    Approximation Algorithms for Connected Maximum Cut and Related Problems

    Full text link
    An instance of the Connected Maximum Cut problem consists of an undirected graph G = (V, E) and the goal is to find a subset of vertices S \subseteq V that maximizes the number of edges in the cut \delta(S) such that the induced graph G[S] is connected. We present the first non-trivial \Omega(1/log n) approximation algorithm for the connected maximum cut problem in general graphs using novel techniques. We then extend our algorithm to an edge weighted case and obtain a poly-logarithmic approximation algorithm. Interestingly, in stark contrast to the classical max-cut problem, we show that the connected maximum cut problem remains NP-hard even on unweighted, planar graphs. On the positive side, we obtain a polynomial time approximation scheme for the connected maximum cut problem on planar graphs and more generally on graphs with bounded genus.Comment: 17 pages, Conference version to appear in ESA 201

    Scheduling over Scenarios on Two Machines

    Get PDF
    We consider scheduling problems over scenarios where the goal is to find a single assignment of the jobs to the machines which performs well over all possible scenarios. Each scenario is a subset of jobs that must be executed in that scenario and all scenarios are given explicitly. The two objectives that we consider are minimizing the maximum makespan over all scenarios and minimizing the sum of the makespans of all scenarios. For both versions, we give several approximation algorithms and lower bounds on their approximability. With this research into optimization problems over scenarios, we have opened a new and rich field of interesting problems.Comment: To appear in COCOON 2014. The final publication is available at link.springer.co

    On k-Column Sparse Packing Programs

    Full text link
    We consider the class of packing integer programs (PIPs) that are column sparse, i.e. there is a specified upper bound k on the number of constraints that each variable appears in. We give an (ek+o(k))-approximation algorithm for k-column sparse PIPs, improving on recent results of k22kk^2\cdot 2^k and O(k2)O(k^2). We also show that the integrality gap of our linear programming relaxation is at least 2k-1; it is known that k-column sparse PIPs are Ω(k/logk)\Omega(k/ \log k)-hard to approximate. We also extend our result (at the loss of a small constant factor) to the more general case of maximizing a submodular objective over k-column sparse packing constraints.Comment: 19 pages, v3: additional detail

    Scheduling Bidirectional Traffic on a Path

    Full text link
    We study the fundamental problem of scheduling bidirectional traffic along a path composed of multiple segments. The main feature of the problem is that jobs traveling in the same direction can be scheduled in quick succession on a segment, while jobs in opposing directions cannot cross a segment at the same time. We show that this tradeoff makes the problem significantly harder than the related flow shop problem, by proving that it is NP-hard even for identical jobs. We complement this result with a PTAS for a single segment and non-identical jobs. If we allow some pairs of jobs traveling in different directions to cross a segment concurrently, the problem becomes APX-hard even on a single segment and with identical jobs. We give polynomial algorithms for the setting with restricted compatibilities between jobs on a single and any constant number of segments, respectively

    Scheduling Algorithms for Procrastinators

    Full text link
    This paper presents scheduling algorithms for procrastinators, where the speed that a procrastinator executes a job increases as the due date approaches. We give optimal off-line scheduling policies for linearly increasing speed functions. We then explain the computational/numerical issues involved in implementing this policy. We next explore the online setting, showing that there exist adversaries that force any online scheduling policy to miss due dates. This impossibility result motivates the problem of minimizing the maximum interval stretch of any job; the interval stretch of a job is the job's flow time divided by the job's due date minus release time. We show that several common scheduling strategies, including the "hit-the-highest-nail" strategy beloved by procrastinators, have arbitrarily large maximum interval stretch. Then we give the "thrashing" scheduling policy and show that it is a \Theta(1) approximation algorithm for the maximum interval stretch.Comment: 12 pages, 3 figure

    Distance and the pattern of intra-European trade

    Get PDF
    Given an undirected graph G = (V, E) and subset of terminals T ⊆ V, the element-connectivity κ ′ G (u, v) of two terminals u, v ∈ T is the maximum number of u-v paths that are pairwise disjoint in both edges and non-terminals V \ T (the paths need not be disjoint in terminals). Element-connectivity is more general than edge-connectivity and less general than vertex-connectivity. Hind and Oellermann [21] gave a graph reduction step that preserves the global element-connectivity of the graph. We show that this step also preserves local connectivity, that is, all the pairwise element-connectivities of the terminals. We give two applications of this reduction step to connectivity and network design problems. • Given a graph G and disjoint terminal sets T1, T2,..., Tm, we seek a maximum number of elementdisjoint Steiner forests where each forest connects each Ti. We prove that if each Ti is k element k connected then there exist Ω( log hlog m) element-disjoint Steiner forests, where h = | i Ti|. If G is planar (or more generally, has fixed genus), we show that there exist Ω(k) Steiner forests. Our proofs are constructive, giving poly-time algorithms to find these forests; these are the first non-trivial algorithms for packing element-disjoint Steiner Forests. • We give a very short and intuitive proof of a spider-decomposition theorem of Chuzhoy and Khanna [12] in the context of the single-sink k-vertex-connectivity problem; this yields a simple and alternative analysis of an O(k log n) approximation. Our results highlight the effectiveness of the element-connectivity reduction step; we believe it will find more applications in the future
    corecore