495 research outputs found
Photo-induced dynamics of the heme centers in cytochrome bc 1
The ultrafast response of cytochrome bc1 is investigated for the first time, via transient absorption
spectroscopy. The distinct redox potentials of both c1- and b-hemes allow for a clear differentiation of
their respective signals. We find that while the c1-heme photo-product exhibits the characteristics of a
5-coordinated species, the b-hemes presumably undergo photo-oxidation at a remarkably high
quantum yield. The c1-heme iron–ligand recombination time is 5.4 ps, in agreement with previous
reports on homologous cytochromes. The suggested photo-oxidized state of the b-hemes has a lifetime
of 6.8 ps. From this short life-time we infer that the electron acceptor must be within van der Walls
contact with the heme, which points to the fact that the axial histidine residue is the electron acceptor.
The different heme-responses illustrate the flexibility of the c1-heme ligation in contrast to the more
rigid b-heme binding, as well as the higher electronic reactivity of the b-hemes within the bc1 complex.
This study also demonstrates the remarkable connection between the heme local environment and its
dynamics and, therefore, biological functio
X-ray Absorption Linear Dichroism at the Ti K-edge of TiO2 anatase single crystal
Anatase TiO2 (a-TiO2) exhibits a strong X-ray absorption linear dichroism
with the X-ray incidence angle in the pre-edge, the XANES and the EXAFS at the
titanium K-edge. In the pre-edge region the behaviour of the A1-A3 and B peaks,
originating from the 1s-3d transitions, is due to the strong -orbital
polarization and strong orbital mixing. An unambiguous assignment of the
pre-edge peak transitions is made in the monoelectronic approximation with the
support of ab initio finite difference method calculations and spherical tensor
analysis in quantitative agreement with the experiment. It is found that A1 is
mostly an on-site 3d-4p hybridized transition, while peaks A3 and B are
non-local transitions, with A3 being mostly dipolar and influence by the 3d-4p
intersite hybridization, while B is due to interactions at longer range.
Finally, peak A2 which was previously assigned to a transition involving
pentacoordinated titanium atoms exhibits a quadrupolar angular evolution with
incidence angle. These results pave the way to the use of the pre-edge peaks at
the K-edge of a-TiO2 to characterize the electronic structure of related
materials and in the field of ultrafast XAS where the linear dichroism can be
used to compare the photophysics along different axes.Comment: 43 pages, 19 figure
Wave packet dynamics of potassium dimers attached to helium nanodroplets
The dynamics of vibrational wave packets excited in K dimers attached to
superfluid helium nanodroplets is investigated by means of femtosecond
pump-probe spectroscopy. The employed resonant three-photon-ionization scheme
is studied in a wide wavelength range and different pathways leading to
K-formation are identified. While the wave packet dynamics of the
electronic ground state is not influenced by the helium environment,
perturbations of the electronically excited states are observed. The latter
reveal a strong time dependence on the timescale 3-8 ps which directly reflects
the dynamics of desorption of K off the helium droplets
Fluorescence kinetics of flavin adenine dinucleotide in different microenvironments
Fluorescence kinetics of flavin adenine dinucleotide was measured in a wide time and spectral range in different media, affecting its intra- end extramolecular interactions, and analyzed by a new method based on compressed sensing
Analysis of interactions between Information system, Communication and Marketing in Organizations
Communication, Information system and Marketing are a high and real value-added function for any organization. It needs to be clearly situated in the structure of organization to play completely their role. According to the Level of development of the organization, the company or the country, their place and their attributions are often badly defined. Their interactions also. We believe that numerous factors macro as those of the external environment and the micro as those of the business sector of the organization, its size, its structure have a determining role. To validate our hypotheses, we realized an empirical study on a sample of 262 Moroccan organizations, between companies and organizations other than companies. This work on analysis of interactions between information system, communication and marketing in organizations could server as well to the researchers, to the professionals, as to the managers
Charge separation and carrier dynamics in donor-acceptor heterojunction photovoltaic systems
Electron transfer and subsequent charge separation across donor-acceptor heterojunctions remain the most important areas of study in the field of third- generation photovoltaics. In this context, it is particularly important to unravel the dynamics of individual ultrafast processes (such as photoinduced electron transfer, carrier trapping and association, and energy transfer and relaxation), which prevail in materials and at their interfaces. In the frame of the National Center of Competence in Research “Molecular Ultrafast Science and Technology,” a research instrument of the Swiss National Science Foundation, several groups active in the field of ultrafast science in Switzerland have applied a number of complementary experimental techniques and computational simulation tools to scrutinize these critical photophysical phenomena. Structural, electronic, and transport properties of the materials and the detailed mechanisms of photoinduced charge separation in dye- sensitized solar cells, conjugated polymer- and small molecule-based organic photovoltaics, and high-efficiency lead halide perovskite solar energy converters have been scrutinized. Results yielded more than thirty research articles, an overview of which is provided here
Structural analysis of ultrafast extended x-ray absorption fine structure with subpicometer spatial resolution: Application to spin crossover complexes
We present a novel analysis of time-resolved extended x-ray absorption fine structure (EXAFS) spectra based on the fitting of the experimental transients obtained from optical pump/x-ray probe experiments. We apply it to the analysis of picosecond EXAFS data on aqueous [FeII (bpy)3] 2+, which undergoes a light induced conversion from its low-spin (LS) ground state to the short-lived (τ≈650 ps) excited high-spin (HS) state. A series of EXAFS spectra were simulated for a collection of possible HS structures from which the ground state fit spectrum was subtracted to generate transient difference absorption (TA) spectra. These are then compared with the experimental TA spectrum using a least-squares statistical analysis to derive the structural change. This approach reduces the number of required parameters by cancellation in the differences. It also delivers a unique solution for both the fractional population and the extracted excited state structure. We thus obtain a value of the Fe-N bond elongation in the HS state with subpicometer precision (0.203±0.008 Å). © 2009 American Institute of Physics.This work was funded by the Swiss National Science Foundation via Contract Nos. 620–066145, 200021–107956, PP002–110464, 200020–116023, 200021–105239, and 200020-116533.Peer Reviewe
Self-phase modulation of a single-cycle THz pulse
We demonstrate self-phase modulation (SPM) of a single-cycle THz pulse in a semiconductor, using bulk n-GaAs as a model system. The SPM arises from the heating of free electrons in the electric field of the THz pulse. Electron heating leads to an ultrafast reduction of the plasma frequency, which results in a strong modification of the THz-range dielectric function of the material. THz SPM is observed directly in the time domain as a characteristic reshaping of single-cycle THz pulse. In the frequency domain, it corresponds to a strong frequency-dependent refractive index nonlinearity of n-GaAs, which is found to be both positive and negative within the broad spectrum of the THz pulse. The spectral position of zero nonlinearity is defined by the electron momentum relaxation rate. Nonlinear spectral broadening and compression of the single-cycle THz pulse was also observed
Ring closing reaction in diarylethene captured by femtosecond electron crystallography
The photoinduced ring-closing reaction in diarylethene, which serves as a model system for understanding reactive crossings through conical intersections, was directly observed with atomic resolution using femtosecond electron diffraction. Complementary ab initio calculations were also performed. Immediately following photoexcitation, subpicosecond structural changes associated with the formation of an open-ring excited-state intermediate were resolved. The key motion is the rotation of the thiophene rings, which significantly decreases the distance between the reactive carbon atoms prior to ring closing. Subsequently, on the few picosecond time scale, localized torsional motions of the carbon atoms lead to the formation of the closed-ring photoproduct. These direct observations of the molecular motions driving an organic chemical reaction were only made possible through the development of an ultrabright electron source to capture the atomic motions within the limited number of sampling frames and the low data acquisition rate dictated by the intrinsically poor thermal conductivity and limited photoreversibility of organic materials
- …
