224 research outputs found
The influence of normal stress and sliding velocity on the frictional behaviour of calcite at room temperature. Insights from laboratory experiments and microstructural observations
The presence of calcite in and near faults, as the dominant material, cement, or vein fill,
indicates that the mechanical behaviour of carbonate-dominated material likely plays an important role in shallow- and mid-crustal faulting. To better understand the behaviour of calcite,
under loading conditions relevant to earthquake nucleation, we sheared powdered gouge of
Carrara Marble, >98 per cent CaCO3, at constant normal stresses between 1 and 100 MPa
under water-saturated conditions at room temperature. We performed slide-hold-slide tests,
1–3000 s, to measure the amount of static frictional strengthening and creep relaxation, and
velocity-stepping tests, 0.1–1000 µm s–1, to evaluate frictional stability. We observe that the
rates of frictional strengthening and creep relaxation decrease with increasing normal stress
and diverge as shear velocity is increased from 1 to 3000 µm s–1 during slide-hold-slide experiments. We also observe complex frictional stability behaviour that depends on both normal
stress and shearing velocity. At normal stresses less than 20 MPa, we observe predominantly
velocity-neutral friction behaviour. Above 20 MPa, we observe strong velocity-strengthening
frictional behaviour at low velocities, which then evolves towards velocity-weakening friction
behaviour at high velocities. Microstructural analyses of recovered samples highlight a variety
of deformation mechanisms including grain size reduction and localization, folding of calcite grains and fluid-assisted diffusion mass transfer processes promoting the development of
calcite nanograins in the highly deformed portions of the experimental fault. Our combined
analyses indicate that calcite fault gouge transitions from brittle to semi-brittle behaviour at
high normal stress and slow sliding velocities. This transition has important implications for
earthquake nucleation and propagation on faults in carbonate-dominated lithologies
Contrast-Enhanced Magnetic Resonance Angiography Using a Novel Elastin-Specific Molecular Probe in an Experimental Animal Model
Objectives. The aim of this study was to test the potential of a new elastin-specific molecular agent for the performance of contrast-enhanced first-pass and 3D magnetic resonance angiography (MRA), compared to a clinically used extravascular contrast agent (gadobutrol) and based on clinical MR sequences. Materials and Methods. Eight C57BL/6J mice (BL6, male, aged 10 weeks) underwent a contrast-enhanced first-pass and 3D MR angiography (MRA) of the aorta and its main branches. All examinations were on a clinical 3 Tesla MR system (Siemens Healthcare, Erlangen, Germany). The clinical dose of 0.1 mmol/kg was administered in both probes. First, a time-resolved MRA (TWIST) was acquired during the first-pass to assess the arrival and washout of the contrast agent bolus. Subsequently, a high-resolution 3D MRA sequence (3D T1 FLASH) was acquired. Signal-to-noise ratios (SNRs) and contrast-to-noise ratios (CNRs) were calculated for all sequences. Results. The elastin-specific MR probe and the extravascular imaging agent (gadobutrol) enable high-quality MR angiograms in all animals. During the first-pass, the probes demonstrated a comparable peak enhancement (300.6 +/- 32.9 vs. 288.5 +/- 33.1, p > 0.05). Following the bolus phase, both agents showed a comparable intravascular enhancement (SNR: 106.7 +/- 11 vs. 102.3 +/- 5.3; CNR 64.5 +/- 7.4 vs. 61.1 +/- 7.2, p > 0.05). Both agents resulted in a high image quality with no statistical difference (p > 0.05). Conclusion. The novel elastin-specific molecular probe enables the performance of first-pass and late 3D MR angiography with an intravascular contrast enhancement and image quality comparable to a clinically used extravascular contrast agent
The shallow boreholes at The AltotiBerina near fault Observatory (TABOO; northern Apennines of Italy)
Abstract. As part of an interdisciplinary research project, funded by the European Research Council and addressing the mechanics of weak faults, we drilled three 200–250 m-deep boreholes and installed an array of seismometers. The array augments TABOO (The AltotiBerina near fault ObservatOry), a scientific infrastructure managed by the Italian National Institute of Geophysics and Volcanology. The observatory, which consists of a geophysical network equipped with multi-sensor stations, is located in the northern Apennines (Italy) and monitors a large and active low-angle normal fault. The drilling operations started at the end of 2011 and were completed by July 2012. We instrumented the boreholes with three-component short-period (2 Hz) passive instruments at different depths. The seismometers are now fully operational and collecting waveforms characterised by a very high signal to noise ratio that is ideal for studying microearthquakes. The resulting increase in the detection capability of the seismic network will allow for a broader range of transients to be identified
A large fault partially reactivated during two contiguous seismic sequences in Central Italy. The role of geometrical and frictional heterogeneities
Earthquakes can rupture multiple fault segments as well as faults with complex geometry, or heterogeneous pre-stress and frictional properties. These observations have been documented mainly for moderate-to-large earthquakes by inverting geodetic and seismic data and by studying the influence of fault orientation and rheology within the regional stress field.
In this work we have studied the Gorzano fault, GF, a large normal fault within the active fault system of Central Italy that during the last two largest Italian seismic sequences, L'Aquila (2009) and Amatrice-Visso-Norcia (2016–2017), was reactivated via a series of 5.0 < Mw < 6.0 events. We calculated moment tensor solutions for 134 M > 3 events and evaluated their normalized slip-tendency. Merging these results with high resolution earthquake catalogs, available M > 5 earthquake slip distributions, and frictional properties characterizing the activated fault, we develop a mechanical model and discuss potential earthquake rupture scenarios.
The GF is an optimally oriented fault within the regional stress field and from, the reactivation via aftershock or mainshock slip of complementary fault portions from 2009 to 2017 indicates that the fault behaves as a single fault structure. The geometrical and mechanical heterogeneities suggest that the most likely slip behavior of GF is the reactivation of different fault portions with M > 5.0. However, due to favorable initial stress conditions, we suggest that a seismic rupture can produce the complete reactivation of the fault, resulting in a M 6.5–6.6 earthquake as documented in paleoseismological data
Early-stage rifting of the northern Tyrrhenian Sea Basin: Results from a combined wide-angle and multichannel seismic study
Extension of the continental lithosphere leads to the formation of rift basins and ultimately may create passive continental margins. The mechanisms that operate during the early stage of crustal extension are still intensely debated. We present the results from coincident multichannel seismic and wide-angle seismic profiles that transect across the northern Tyrrhenian Sea Basin. The profiles cross the Corsica Basin (France) to the Latium Margin (Italy) where the early-rift stage of the basin is well preserved. We found two domains, each with a distinct tectonic style, heat flow and crustal thickness. One domain is the Corsica Basin in the west that formed before the main rift phase of the northern Tyrrhenian Sea opening (∼8–4 Ma). The second domain is rifted continental crust characterized by tilted blocks and half-graben structures in the central region and at the Latium Margin. These two domains are separated by a deep (∼10 km) sedimentary complex of the eastern portion of the Corsica Basin. Travel-time tomography of wide-angle seismic data reveals the crustal architecture and a subhorizontal 15–17 ± 1 km deep Moho discontinuity under the basin. To estimate the amount of horizontal extension we have identified the pre-, syn-, and post-tectonic sedimentary units and calculated the relative displacement of faults. We found that major faults initiated at angles of 45°–50° and that the rifted domain is horizontally stretched by a factor of β ∼ 1.3 (∼8–10 mm/a). The crust has been thinned from ∼24 to ∼17 km indicating a similar amount of extension (∼30%). The transect represents one of the best imaged early rifts and implies that the formation of crustal-scale detachments, or long-lived low-angle normal faults, is not a general feature that controls the rift initiation of continental crust. Other young rift basins, like the Gulf of Corinth, the Suez Rift or Lake Baikal, display features resembling the northern Tyrrhenian Basin, suggesting that half-graben formations and distributed homogeneous crustal thinning are a common feature during rift initiation
Modelling fluid flow in complex natural fault zones. Implications for natural and human-induced earthquake nucleation
Pore fluid overpressures in active fault systems can drive fluid flow and cause fault weakening and seismicity. In return, deformation accommodated by different modes of failure (e.g. brittle vs. ductile) also affects fault zone permeability and, hence, fluid flow and pore fluid pressure distribution. Current numerical simulation techniques model how fluid flow controls fault reactivation and associated seismicity. However, the control exerted by pore fluid pressure on the transition from slow aseismic fault sliding to fast seismic sliding, during the earthquake nucleation phase, is still poorly understood. Here, we model overpressured, supercritical CO2 fluid flow in natural faults, where non-linear, complex feedback between fluid flow, fluid pressure and fault deformation controls the length of the nucleation phase of an earthquake and the duration of the interseismic period. The model setup is an analogue for recent seismic source events in the Northern Apennines of Italy (e.g. Mw 6.0 1997-98 Colfiorito and Mw 6.5 2016 Norcia earthquakes). Our modelling results of Darcy fluid flow show that the duration of the nucleation phase can be reduced by orders of magnitude, when realistic models of fault zone architecture and pore pressure- and deformation-dependent permeability are considered. In particular, earthquake nucleation phase duration can drop from more than 10 years to a few days/minutes, while the seismic moment can decrease by a factor of 6. Notably, the moment of aseismic slip (M0=109Nm) obtained during the nucleation phase modelled in our study is of the same order as the detection limit of local strain measurements using strain meters. These findings have significant implications for earthquake early warning systems, as the duration and moment of the nucleation phase will affect the likelihood of timely precursory signal detection. Interestingly, aseismic slip has been measured up to a few months before some recent large earthquakes, although in a different tectonic context than the model developed here, rekindling interest in the nucleation phase of earthquakes. In addition, our results have important implications for short and long term earthquake forecasting, as crustal fluid migration during the interseismic period may control fault strength and earthquake recurrence intervals
- …
