4,183 research outputs found
Stellar Motions in the Polar Ring Galaxy NGC 4650A
We present the first measurement of the stellar kinematics in the polar ring
of NGC 4650A. There is well defined rotation, with the stars and gas rotating
in the same direction, and with similar amplitude. The gaseous and stellar
kinematics suggest an approximately flat rotation curve, providing further
support for the hypothesis that the polar material resides in a disk rather
than in a ring. The kinematics of the emission line gas at and near the center
of the S0 suggests that the polar disk lacks a central hole. We have not
detected evidence for two, equal mass, counterrotating stellar polar streams,
as is predicted in the resonance levitation model proposed by Tremaine & Yu. A
merger seems the most likely explanation for the structure and kinematics of
NGC 4650A.Comment: 4 pages, accepted for publication in ApJ Letter
Global lopsided instability in a purely stellar galactic disc
It is shown that pure exponential discs in spiral galaxies are capable of
supporting slowly varying discrete global lopsided modes, which can explain the
observed features of lopsidedness in the stellar discs. Using linearized fluid
dynamical equations with the softened self-gravity and pressure of the
perturbation as the collective effect, we derive self-consistently a quadratic
eigenvalue equation for the lopsided perturbation in the galactic disc. On
solving this, we find that the ground-state mode shows the observed
characteristics of the lopsidedness in a galactic disc, namely the fractional
Fourier amplitude A increases smoothly with the radius. These lopsided
patterns precess in the disc with a very slow pattern speed with no preferred
sense of precession. We show that the lopsided modes in the stellar disc are
long-lived because of a substantial reduction ( a factor of 10 compared
to the local free precession rate) in the differential precession. The
numerical solution of the equations shows that the ground-state lopsided modes
are either very slowly precessing stationary normal mode oscillations of the
disc or growing modes with a slow growth rate depending on the relative
importance of the collective effect of the self-gravity. N-body simulations are
performed to test the spontaneous growth of lopsidedness in a pure stellar
disc. Both approaches are then compared and interpreted in terms of long-lived
global instabilities, with almost zero pattern speed.Comment: 15 pages, 23 figures, accepted in MNRA
MOND and Cosmology
I review various ideas on MOND cosmology and structure formation beginning
with non-relativistic models in analogy with Newtonian cosmology. I discuss
relativistic MOND cosmology in the context of Bekenstein's theory and propose
an alternative biscalar effective theory of MOND in which the acceleration
parameter is identified with the cosmic time derivative of a matter coupling
scalar field. Cosmic CDM appears in this theory as scalar field oscillations of
the auxiliary "coupling strength" field.Comment: 8 pages, LaTeX, 2 figures, to appear in proceedings of IAP05 in
Paris: Mass Profiles and Shapes of Cosmological Structures, G. Mamon, F.
Combes, C. Deffayet and B. Fort (eds), (EDP-Sciences 2005
On Eigenvalue spacings for the 1-D Anderson model with singular site distribution
We study eigenvalue spacings and local eigenvalue statistics for 1D lattice
Schrodinger operators with Holder regular potential, obtaining a version of
Minami's inequality and Poisson statistics for the local eigenvalue spacings.
The main additional new input are regular properties of the Furstenberg
measures and the density of states obtained in some of the author's earlier
work.Comment: 13 page
Gravitational Lensing & Stellar Dynamics
Strong gravitational lensing and stellar dynamics provide two complementary
and orthogonal constraints on the density profiles of galaxies. Based on
spherically symmetric, scale-free, mass models, it is shown that the
combination of both techniques is powerful in breaking the mass-sheet and
mass-anisotropy degeneracies. Second, observational results are presented from
the Lenses Structure & Dynamics (LSD) Survey and the Sloan Lens ACS (SLACS)
Survey collaborations to illustrate this new methodology in constraining the
dark and stellar density profiles, and mass structure, of early-type galaxies
to redshifts of unity.Comment: 6 pages, 2 figures; Invited contribution in the Proceedings of XXIst
IAP Colloquium, "Mass Profiles & Shapes of Cosmological Structures" (Paris,
4-9 July 2005), eds G. A. Mamon, F. Combes, C. Deffayet, B. Fort (Paris: EDP
Sciences
Lopsided spiral galaxies: evidence for gas accretion
We quantify the degree of lopsidedness for a sample of 149 galaxies observed
in the near-infrared from the OSUBGS sample, and try to explain the physical
origin for the observed disk lopsidedness. We confirm previous studies, but now
for a larger sample, that a large fraction of galaxies show significant
lopsidedness in their stellar disks, measured as the Fourier amplitude of the
m=1 component, normalised to the average or m=0 component, in the surface
density. Late-type galaxies are found to be more lopsided, while the presence
of m=2 spiral arms and bars is correlated. The m=1 amplitude is found to be
uncorrelated with the tidal forces acting on a galaxy via nearby companions.
Numerical simulations are carried out to study the generation of m=1 via
different processes: galaxy tidal encounters, galaxy mergers, and external gas
accretion and subsequent star formation. The simulations show that galaxy
interactions and mergers can trigger strong lopsidedness, but do not explain
several independent statistical properties of observed galaxies. To explain all
the observational results, it is required that a large fraction of lopsidedness
results from cosmological accretion of gas on galactic disks, which can create
strongly lopsided disks when this accretion is asymmetrical enough.Comment: accepted for publication in Astronomy and Astrophysics - Final
version after language editio
CO map and steep Kennicutt-Schmidt relation in the extended UV disk of M63
Results from the UV satellite GALEX revealed large extensions of disks in
some nearby spiral galaxies, extending out to 3 to 4 times the isophotal
radius, r25. M63 is a remarkable example of a spiral galaxy with one of the
most extended UV disks, so it offers the opportunity to search for the
molecular gas and characterize the star formation in outer disk regions as
revealed by the UV emission. We obtained deep CO(1-0) and CO(2-1) observations
on the IRAM 30 m telescope along the major axis of the M63 disk from the center
out to the galactocentric radius rgal = 1.6 r25 and over a bright UV region at
rgal = 1.36 r25. CO(1-0) is detected all along the M63 major axis out to r25,
and CO(2-1) is confined to rgal = 0.68 r25, which may betray lower excitation
temperatures in the outer disk. CO(1-0) is also detected in the external bright
UV region of M63. The radial profiles of the CO emission and of the Halpha, 24
micron, NUV and FUV star formation tracers and HI taken from the literature
show a severe drop with the galactocentric radius, such that beyond r25 they
are all absent with the exception of a faint UV emission and HI. The CO
emission detection in the external UV region, where the UV flux is higher than
the UV flux observed beyond r25, highlights a tight correlation between the CO
and UV fluxes, namely the amount of molecular gas and the intensity of star
formation. This external UV region is dominated by the atomic gas, suggesting
that HI is more likely the precursor of H2 rather than the product of UV
photodissociation. A broken power law needs to be invoked to describe the
Kennicutt-Schmidt (K-S) relation of M63 from the center of the galaxy out to
rgal = 1.36 r25. While all along the major axis out to r25 the K-S relation is
almost linear, in the external UV region the SFR regime is highly nonlinear and
characterized by a steep K-S relation and very low star formation efficiency.Comment: 12 pages, 8 figures, A&A accepte
CO observations of southern mergers
There are good reasons to believe that the formation of some elliptical galaxies result from the merging of two disk galaxies, as Toomre and Toomre first suggested (1972, Ap. J. 178, 623). Such a process strongly enhances the star-formation activity of the system, thus consuming its molecular gas. This might account for the low cold-gas content of elliptical galaxies compared to that of spirals. Researchers present here CO(1-0) and CO(2-1) observations of a sequence of three objects, NGC 1614, NGC 3256, and NGC 7252, that present characteristic features of merger remnants: single body and extended tidal tails. NGC 3256 and 7252 even exhibit the r(exp 1/4) radial light distribution that is the signature of elliptical galaxies, which indicates that their stellar bodies are in late stages of relaxation. Both NGC 1614 and NGC 3256 undergo extended bursts of star formation revealed by their large far-infrared luminosities, and by the presence in the near-infrared spectrum of the 3.28 microns feature (Morwood: 1986, A. A. 166, 4) attributed to polycyclic aromatic hydrocarbons. On the other hand, NGC 7252 has a milder activity of star formation, as suggested by a lower infrared luminosity, and thus seems to have gone past the starburst phase. The CO data were collected with the Swedish-ESO 15 m Submillimeter Telescope (SEST) (beamsize = 43 seconds at 115 GHz, 23 seconds at 230 GHz). For NGC 7252, researchers have only observed the central position in CO-12(1-0). The spectrum is displayed together with an HI spectrum obtained with the Nancay radiotelescope. Researchers mapped NGC 1614 and NGC 3256 in CO-12(1-0) and CO-12(2-1), and also observed the nucleus of NGC 3256 in CO-13(1-0). The various CO spectra obtained towards the nuclei of both galaxies are presented. Characteristics of the galaxies are gathered, with luminosities and masses in solar units and temperatures in Kelvins
Redshifted formaldehyde from the gravitational lens B0218+357
The gravitational lens toward B0218+357 offers the unique possibility to
study cool moderately dense gas with high sensitivity and angular resolution in
a cloud that existed half a Hubble time ago. Observations of the radio
continuum and six formaldehyde (H2CO) lines were carried out with the VLA, the
Plateau de Bure interferometer, and the Effelsberg 100-m telescope. Three radio
continuum maps indicate a flux density ratio between the two main images, A and
B, of ~ 3.4 +/- 0.2. Within the errors the ratio is the same at 8.6, 14.1, and
43 GHz. The 1_{01}-0_{00} line of para-H2CO is shown to absorb the continuum of
image A. Large Velocity Gradient radiative transfer calculations are performed
to reproduce the optical depths of the observed two cm-wave "K-doublet" and
four mm-wave rotational lines. These calculations also account for a likely
frequency-dependent continuum cloud coverage. Confirming the diffuse nature of
the cloud, an n(H2) density of < 1000 cm^{-3} is derived, with the best fit
suggesting n(H2) ~ 200 cm^{-3}. The H2CO column density of the main velocity
component is ~5 * 10^{13} cm^{-2}, to which about 7.5 * 10^{12} cm^{-2} has to
be added to also account for a weaker feature on the blue side, 13 km/s apart.
N(H2CO)/N(NH3) ~ 0.6, which is four times less than the average ratio obtained
from a small number of local diffuse (galactic) clouds seen in absorption. The
ortho-to-para H2CO abundance ratio is 2.0 - 3.0, which is consistent with the
kinetic temperature of the molecular gas associated with the lens of B0218+357.
With the gas kinetic temperature and density known, it is found that optically
thin transitions of CS, HCN, HNC, HCO+, and N2H+ (but not CO) will provide
excellent probes of the cosmic microwave background at redshift z=0.68.Comment: Accepted for A&A, 8 Pages, 3 Figures, 5 Table
- …
