892 research outputs found
Non locality and causal evolution in QFT
Non locality appearing in QFT during the free evolution of localized field
states and in the Feynman propagator function is analyzed. It is shown to be
connected to the initial non local properties present at the level of quantum
states and then it does not imply a violation of Einstein's causality. Then it
is investigated a simple QFT system with interaction, consisting of a classical
source coupled linearly to a quantum scalar field, that is exactly solved. The
expression for the time evolution of the state describing the system is given.
The expectation value of any arbitrary ``good'' local observable, expressed as
a function of the field operator and its space and time derivatives, is
obtained explicitly at all order in the field-matter coupling constant. These
expectation values have a source dependent part that is shown to be always
causally retarded, while the non local contributions are source independent and
related to the non local properties of zero point vacuum fluctuations.Comment: Submitted to Journal of Physics B: 16 pages: 1 figur
Non-local quantum correlations and detection processes in QFT
Quantum detection processes in QFT must play a key role in the description of
quantum field correlations, such as the appearance of entanglement, and of
causal effects. We consider the detection in the case of a simple QFT model
with a suitable interaction to exact treatment, consisting of a quantum scalar
field coupled linearly to a classical scalar source. We then evaluate the
response function to the field quanta of two-level point-like quantum model
detectors, and analyze the effects of the approximation adopted in standard
detection theory. We show that the use of the RWA, that characterizes the
Glauber detection model, leads in the detector response to non-local terms
corresponding to an instantaneously spreading of source effects over the whole
space. Other detector models, obtained with non-standard or the no-application
of RWA, give instead local responses to field quanta, apart from source
independent vacuum contribution linked to preexisting correlations of
zero-point field.Comment: 23 page
Moving Atom-Field Interaction: Correction to Casimir-Polder Effect from Coherent Back-action
The Casimir-Polder force is an attractive force between a polarizable atom
and a conducting or dielectric boundary. Its original computation was in terms
of the Lamb shift of the atomic ground state in an electromagnetic field (EMF)
modified by boundary conditions along the wall and assuming a stationary atom.
We calculate the corrections to this force due to a moving atom, demanding
maximal preservation of entanglement generated by the moving atom-conducting
wall system. We do this by using non-perturbative path integral techniques
which allow for coherent back-action and thus can treat non-Markovian
processes. We recompute the atom-wall force for a conducting boundary by
allowing the bare atom-EMF ground state to evolve (or self-dress) into the
interacting ground state. We find a clear distinction between the cases of
stationary and adiabatic motions. Our result for the retardation correction for
adiabatic motion is up to twice as much as that computed for stationary atoms.
We give physical interpretations of both the stationary and adiabatic atom-wall
forces in terms of alteration of the virtual photon cloud surrounding the atom
by the wall and the Doppler effect.Comment: 16 pages, 2 figures, clarified discussions; to appear in Phys. Rev.
Casimir-Polder potentials as entanglement probe
We have considered the interaction of a pair of spatially separated two-level
atoms with the electromagnetic field in its vacuum state and we have analyzed
the amount of entanglement induced between the two atoms by the non local field
fluctuations. This has allowed us to characterize the quantum nature of the non
local correlations of the electromagnetic field vacuum state as well as to link
the induced quantum entanglement with Casimir-Polder potentials.Comment: Published on Europhysics Letters 78 (2007) 3000
The Fermi Problem in Discrete Systems
The Fermi two-atom problem illustrates an apparent causality violation in
Quantum Field Theory which has to do with the nature of the built in
correlations in the vacuum. It has been a constant subject of theoretical
debate and discussions during the last few decades. Nevertheless, although the
issues at hand could in principle be tested experimentally, the smallness of
such apparent violations of causality in Quantum Electrodynamics prevented the
observation of the predicted effect. In the present paper we show that the
problem can be simulated within the framework of discrete systems that can be
manifested, for instance, by trapped atoms in optical lattices or trapped ions.
Unlike the original continuum case, the causal structure is no longer sharp.
Nevertheless, as we show, it is possible to distinguish between "trivial"
effects due to "direct" causality violations, and the effects associated with
Fermi's problem, even in such discrete settings. The ability to control
externally the strength of the atom-field interactions, enables us also to
study both the original Fermi problem with "bare atoms", as well as correction
in the scenario that involves "dressed" atoms. Finally, we show that in
principle, the Fermi effect can be detected using trapped ions.Comment: Second version - minor change
Quantum optical dipole radiation fields
We introduce quantum optical dipole radiation fields defined in terms of photon creation and annihilation operators. These fields are identified through their spatial dependence, as the components of the total fields that survive infinitely far from the dipole source. We use these radiation fields to perturbatively evaluate the electromagnetic radiated energy-flux of the excited dipole. Our results indicate that the standard interpretation of a bare atom surrounded by a localised virtual photon cloud, is difficult to sustain, because the radiated energy-flux surviving infinitely far from the source contains virtual contributions. It follows that there is a clear distinction to be made between a radiative photon defined in terms of the radiation fields and a real photon, whose identification depends on whether or not a given process conserves the free energy. This free energy is represented by the difference between the total dipole-field Hamiltonian and its interaction component
Spontaneous absorption of an accelerated hydrogen atom near a conducting plane in vacuum
We study, in the multipolar coupling scheme, a uniformly accelerated
multilevel hydrogen atom in interaction with the quantum electromagnetic field
near a conducting boundary and separately calculate the contributions of the
vacuum fluctuation and radiation reaction to the rate of change of the mean
atomic energy. It is found that the perfect balance between the contributions
of vacuum fluctuations and radiation reaction that ensures the stability of
ground-state atoms is disturbed, making spontaneous transition of ground-state
atoms to excited states possible in vacuum with a conducting boundary. The
boundary-induced contribution is effectively a nonthermal correction, which
enhances or weakens the nonthermal effect already present in the unbounded
case, thus possibly making the effect easier to observe. An interesting feature
worth being noted is that the nonthermal corrections may vanish for atoms on
some particular trajectories.Comment: 19 pages, no figures, Revtex
Accelerated Detector - Quantum Field Correlations: From Vacuum Fluctuations to Radiation Flux
In this paper we analyze the interaction of a uniformly accelerated detector
with a quantum field in (3+1)D spacetime, aiming at the issue of how kinematics
can render vacuum fluctuations the appearance of thermal radiance in the
detector (Unruh effect) and how they engender flux of radiation for observers
afar. Two basic questions are addressed in this study: a) How are vacuum
fluctuations related to the emitted radiation? b) Is there emitted radiation
with energy flux in the Unruh effect? We adopt a method which places the
detector and the field on an equal footing and derive the two-point correlation
functions of the detector and of the field separately with full account of
their interplay. From the exact solutions, we are able to study the complete
process from the initial transient to the final steady state, keeping track of
all activities they engage in and the physical effects manifested. We derive a
quantum radiation formula for a Minkowski observer. We find that there does
exist a positive radiated power of quantum nature emitted by the detector, with
a hint of certain features of the Unruh effect. We further verify that the
total energy of the dressed detector and a part of the radiated energy from the
detector is conserved. However, this part of the radiation ceases in steady
state. So the hint of the Unruh effect in radiated power is actually not
directly from the energy flux that the detector experiences in Unruh effect.
Since all the relevant quantum and statistical information about the detector
(atom) and the field can be obtained from the results presented here, they are
expected to be useful, when appropriately generalized, for addressing issues of
quantum information processing in atomic and optical systems, such as quantum
decoherence, entanglement and teleportation.Comment: 24 pages, 11 figures, new results and comments added in Secs.VI and
VII, with other corresponding change
Nonlocal field correlations and dynamical Casimir-Polder forces between one excited- and two ground-state atoms
The problem of nonlocality in the dynamical three-body Casimir-Polder
interaction between an initially excited and two ground-state atoms is
considered. It is shown that the nonlocal spatial correlations of the field
emitted by the excited atom during the initial part of its spontaneous decay
may become manifest in the three-body interaction. The observability of this
new phenomenon is discussed.Comment: 17 pages, 1 figure, sub. to Phys. Rev.
Barremian and Aptian (Cretaceous) sharks and rays from Speeton, Yorkshire, north-east England
Bulk sampling of a number of horizons within the upper part of the Speeton Clay Type section has produced teeth and other remains of sharks and rays from several poorly studied horizons. At least 10 shark and two ray species were recorded, with two sharks, Pteroscyllium speetonensis and Palaeobrachaelurus mitchelli, being described as new. The oldest occurrences of the family Anacoracadae and the genus Pteroscyllium, as well as the youngest occurrence of the genus Palaeobrachaelurus, were recorded. The palaeoenvironmental significance of the faunas is briefly discussed
- …
