259 research outputs found
A framework for orthology assignment from gene rearrangement data
Abstract. Gene rearrangements have successfully been used in phylogenetic reconstruction and comparative genomics, but usually under the assumption that all genomes have the same gene content and that no gene is duplicated. While these assumptions allow one to work with organellar genomes, they are too restrictive when comparing nuclear genomes. The main challenge is how to deal with gene families, specifically, how to identify orthologs. While searching for orthologies is a common task in computational biology, it is usually done using sequence data. We approach that problem using gene rearrangement data, provide an optimization framework in which to phrase the problem, and present some preliminary theoretical results.
Topological and geometrical restrictions, free-boundary problems and self-gravitating fluids
Let (P1) be certain elliptic free-boundary problem on a Riemannian manifold
(M,g). In this paper we study the restrictions on the topology and geometry of
the fibres (the level sets) of the solutions f to (P1). We give a technique
based on certain remarkable property of the fibres (the analytic representation
property) for going from the initial PDE to a global analytical
characterization of the fibres (the equilibrium partition condition). We study
this analytical characterization and obtain several topological and geometrical
properties that the fibres of the solutions must possess, depending on the
topology of M and the metric tensor g. We apply these results to the classical
problem in physics of classifying the equilibrium shapes of both Newtonian and
relativistic static self-gravitating fluids. We also suggest a relationship
with the isometries of a Riemannian manifold.Comment: 36 pages. In this new version the analytic representation hypothesis
is proved. Please address all correspondence to D. Peralta-Sala
Assessment of optimal strategies in a two-patch dengue transmission model with seasonality
Emerging and re-emerging dengue fever has posed serious problems to public health officials in many tropical and subtropical countries. Continuous traveling in seasonally varying areas makes it more difficult to control the spread of dengue fever. In this work, we consider a two-patch dengue model that can capture the movement of host individuals between and within patches using a residence-time matrix. A previous two-patch dengue model without seasonality is extended by adding host demographics and seasonal forcing in the transmission rates. We investigate the effects of human movement and seasonality on the two-patch dengue transmission dynamics. Motivated by the recent Peruvian dengue data in jungle/rural areas and coast/urban areas, our model mimics the seasonal patterns of dengue outbreaks in two patches. The roles of seasonality and residence-time configurations are highlighted in terms of the seasonal reproduction number and cumulative incidence. Moreover, optimal control theory is employed to identify and evaluate patch-specific control measures aimed at reducing dengue prevalence in the presence of seasonality. Our findings demonstrate that optimal patch-specific control strategies are sensitive to seasonality and residence-time scenarios. Targeting only the jungle (or endemic) is as effective as controlling both patches under weak coupling or symmetric mobility. However, focusing on intervention for the city (or high density areas) turns out to be optimal when two patches are strongly coupled with asymmetric mobility.ope
Dynamical analysis on a single population model with state-dependent impulsively unilateral diffusion between two patches
The effects of a data use intervention on educators’ satisfaction and data literacy
Schools in many different countries are increasingly expected to use data for school improvement. However, schools struggle with the implementation of data use, because building human capacity around data use in education has not received enough attention. Educators urgently need to develop data literacy skills for being able to use data. For supporting schools with the endeavor of developing data literacy skills, we developed and implemented a data use intervention in secondary schools based in the Netherlands. This study therefore focuses on the effects of this intervention on educator satisfaction with the intervention and their data literacy skills and attitude toward data use. This study uses a quasi-experimental research design and employs a mixed-methods approach with a data use questionnaire filled in by data team schools (N = 9) and comparison schools (N = 42), a satisfaction questionnaire filled in by data team participants (N = 55), pre- and posttest knowledge tests filled in by data team participants (N = 36), and interview data (N = 11) from three case study schools. The results show that the participants were, for example, very satisfied with the support received during the intervention. Also, respondents developed new data literacy skills and showed a more positive attitude toward data use. The results show how teachers can be supported systematically in data use in their educational practice. In the conclusions, we discuss some important implications for practice regarding the intensity and duration of support and implications for further research
Modeling the Dynamic Transmission of Dengue Fever: Investigating Disease Persistence
Dengue is the most rapidly spreading mosquito-borne viral disease in the world and approximately 2.5 billion people live in dengue endemic countries. In Brazil it is mainly transmitted by Aedes aegypti mosquitoes. The wide clinical spectrum ranges from asymptomatic infections or mild illness, to the more severe forms of infection such as dengue hemorrhagic fever or dengue shock syndrome. The spread and dramatic increase in the occurrence of dengue cases in tropical and subtropical countries has been blamed on uncontrolled urbanization, population growth and international traveling. Vaccines are under development and the only current disease control strategy is trying to keep the vector quantity at the lowest possible levels. Mathematical models have been developed to help understand the disease's epidemiology. These models aim not only to predict epidemics but also to expand the capacity of phenomena explanation. We developed a spatially explicit model to simulate the dengue transmission in a densely populated area. The model involves the dynamic interactions between humans and mosquitoes and takes into account human mobility as an important factor of disease spread. We investigated the importance of human population size, human renewal rate, household infestation and ratio of vectors per person in the maintenance of sustained viral circulation
Cholesterol Pathways Affected by Small Molecules That Decrease Sterol Levels in Niemann-Pick Type C Mutant Cells
Niemann-Pick type C (NPC) disease is a genetically inherited multi-lipid storage disorder with impaired efflux of cholesterol from lysosomal storage organelles.The effect of screen-selected cholesterol lowering compounds on the major sterol pathways was studied in CT60 mutant CHO cells lacking NPC1 protein. Each of the selected chemicals decreases cholesterol in the lysosomal storage organelles of NPC1 mutant cells through one or more of the following mechanisms: increased cholesterol efflux from the cell, decreased uptake of low-density lipoproteins, and/or increased levels of cholesteryl esters. Several chemicals promote efflux of cholesterol to extracellular acceptors in both non-NPC and NPC1 mutant cells. The uptake of low-density lipoprotein-derived cholesterol is inhibited by some of the studied compounds.Results herein provide the information for prioritized further studies in identifying molecular targets of the chemicals. This approach proved successful in the identification of seven chemicals as novel inhibitors of lysosomal acid lipase (Rosenbaum et al, Biochim. Biophys. Acta. 2009, 1791:1155-1165)
Dynamics of a stochastic cooperative predator-prey system with Beddington-DeAngelis functional response
- …
